2021-2022年高三数学(理工农医类)第二次统一考试
- 格式:doc
- 大小:974.50 KB
- 文档页数:10
一、填空题(本大题满分56分)本大题共有14题,每题4分.1. 方程的解是 .2. 已知函数,则 .3. 若实数满足,则的最小值为 .4. 设(i 为虚数单位),则 .5. 的值为 .6. 123101011111111111392733C C C C -+-+--+ 除以5的余数是 .7. 在棱长为的正方体中,点和分别是矩形和的中心,则过点、、的平面截正方体的截面面积为______.8. 等差数列的前项和为,则 .9. 某公司推出了下表所示的QQ 在线等级制度,设等级为级需要的天数为,若关于的方程在区间上有两个不同的实数解,则的取值范围为 . 11.已知直线交极轴于点,过极点作的垂线,垂足为,现将线段绕极点旋转,则在旋转过程中线段所扫过的面积为________.12.给定平面上四点满足4,3,2,3OA OB OC OB OC ===⋅=,则面积的最大值为 .13. 对于非空实数集,定义{},A z x A z x *=∈≥对任意.设非空实数集.现给出以下命题:(1)对于任意给定符合题设条件的集合必有 (2)对于任意给定符合题设条件的集合必有; (3)对于任意给定符合题设条件的集合必有;(4)对于任意给定符合题设条件的集合必存在常数,使得对任意的,恒有.以上命题正确的是 .14. 已知当时,有21124(2)12n x x x x=-+-+-++,根据以上信息,若对任意,都有20123,(1)(12)n n x a a x a x a x x x =+++++-+则 .二、选择题(本大题满分20分)本大题共有4题,每题5分.15.集合{}20,()()01x A x B x x a x b x ⎧-⎫=<=--<⎨⎬+⎩⎭,若“”是“”的充分条件,则的取值范围是( )(A ) (B ) (C ) (D )16.函数1211111(),(),,(),,()()n n f x f x f x x x f x x f x +===++则函数是( )(A )奇函数但不是偶函数 (B )偶函数但不是奇函数 (C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数 17.若,且.则下列结论正确的是( ) (A ) (B ) (C ) (D )18.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为( ) (A )圆或椭圆 (B )抛物线或双曲线 (C )椭圆或双曲线 (D )以上均有可能三、解答题(本大题共5小题,满分74分) 19.(本题满分12分)如图,设是一个高为的四棱锥,底面是边长为的正方形,顶点在底面上的射影是正方形的中心.是棱的中点.试求直线与平面所成角的大小.20.(本题满分14分,第一小题满分5分,第二小题满分9分)对于函数,若在定义域存在实数,满足,则称为“局部奇函数”.(1)已知二次函数2=+-∈,试判断是否为“局部奇函f x ax bx a a b R()24(,)数”?并说明理由;(2)设是定义在上的“局部奇函数”,求实数的取值范围.21.(本题满分14分,第一小题满分4分,第二小题满分10分)某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次停止摸奖的概率;(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布律和数学期望.22.(本题满分16分,第一小题满分4分,第二小题满分5分,第三小题满分7分)已知抛物线.(1) 若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2) 抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.23. (本题满分18分,第一小题满分4分,第二小题满分7分,第三小题满分7分)设等差数列的公差为,且.若设是从开始的前项数列的和,即1*1111(1,)t M a a t t N =++≤∈,112*2122(1)t t t M a a a t N ++=+++<∈,如此下去,其中数列是从第开始到第)项为止的数列的和,即1*1(1,)i i i t t i i M a a t t N -+=++≤∈.(1)若数列,试找出一组满足条件的,使得: ;(2) 试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;(3)若等差数列中.试探索该数列中是否存在无穷整数数列{}*123,(1),n n t t t t t n N ≤<<<<∈,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.xx 高三年级十三校第二次联考数学试卷答案(理科)考试时间:120分钟 满分:150分一、填空题(本大题满分56分)本大题共有14题,每题4分.1. 方程的解是 .2. 已知函数,则 .3. 若实数满足,则的最小值为 4 .4. 设(i 为虚数单位),则 .5. 的值为 0 .6. 123101011111111111392733C C C C -+-+--+ 除以5的余数是 3 .7. (理)在棱长为的正方体中,点和分别是矩形和的中心,则过点、、的平面截正方体的截面面积为______.8. 某公司推出了下表所示的QQ 在线等级制度,设等级为级需要的天数为,则等级为级需要的天数____2700______。
2021-2022年高三下学期第二次联考试题 数学理注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
时量120分钟,满分150分。
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡相应位置上。
3.全部答案在答题卡上完成,答在本试题卷上无效。
4.考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数 (为虚数单位),则 A . B .1 C . D . 2.已知集合{}{}3log(1),0xA x y xB x x-==+=<,则有 A . B . C . D .3.如右图所示,某空间几何体的正视图与侧视图相同,则此几何体的表面积为 A . B . C . D .4.已知函数的定义域为,且,设p :函数 是偶函数;:函数是奇函数,则p 是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知圆:交轴正半轴于点A ,在圆上随机取一点B ,则使 成立的概率为A .B .C .D . 6.设为自然对数的底数,则,,的大小关系为A .。
B .C .D .7.执行如图所示的程序框图,若输出S 的僵值为,则判断框内, 对于下列四个关于的条件的选项,不能填入的是 A . B . C . D .8.集合{}{}222(,)1,,1,(,)(2),0M x y x y y x y N x y x y r r =+≤≤≥-=-+=>,若,则的取值范围为A .B .C .D . 9.已知,其中''120,(0,),()()02f x f x πωθ>∈==,,,将的图象向左平移个单位得,则的单调递减区间是 A . B . C . D .10·双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线互相垂直,、分别为的左,右焦点,点P 在该双曲线的右支上且到直线的距离为,若,则双曲线的标准方程为A .B .C .D .以上答案都不对11.设等差数列的前项和为,已知335588(1)34,(1)32a a a a -+=-+=,则下列选项正确的是A .B .C .D .12.设2222()(ln )1,(044a a D x a x a R =-+-+∈,则D 的最小值为A .B .C .D .2第Ⅱ卷本卷包括必做题与选做题两部分,第13~2l 题为必做题,每个试题考生都必须作答.第22~23题为选做题,考生根据要求作答.二、填空题:本大题共4小题。
C EF 2021年高三下学期毕业班联考(二)数学(理)试题 含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷 选择题 (共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑; 参考公式:·如果事件、互斥,那么柱体的体积公式. 其中表示柱体的底面积,表示柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分.1. 已知复数,则复数的虚部是A .B .iC .-D .-i2. 设实数满足约束条件22010220x y x y x y +-≥⎧⎪-+≥⎨⎪--≥⎩,则的最小值是A .B .1C .2D .7 3. 执行如图所示的程序框图,若输入,则输出的A .B .C .D .4. 下列说法正确的是A .命题“或”为真命题,则命题和命题均为真命题;B .命题“已知、为一个三角形的两内角,若,则”的逆命题为真命题;C .“若,则”的否命题为“若,则”;D .“”是“直线与直线互相垂直”的充要条件.5. 已知双曲线的左顶点与抛物线的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为,则双曲线的标准方程为 A . B . C . D .6. 函数在定义域内可导,若,且当时,有,设,,,则 A . B . C . D .7. 已知为圆的直径,于,为的中点,与相交于点,切线与的延长线交 于点.若圆的半径为1,则的长为A .B .C .D . 8. 已知菱形的边长为2,,点、分别在边、上,,.若, 则的最小值 A . B . C . D .第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的相应横线上. 9. 某学院的三个专业共有1500名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为150的样本.已知该学院的专业有420名学生,专业有580名学生,则在该学院的专业应抽取____________名学生.10.设区域{(,)|01,01},x y x y Ω=≤≤≤≤区域{(,)|,(,)}A x y y x x y =≤∈Ω,在区域中随机取一个点,则该点在中的概率___________11. 某几何体的三视图如图所示,其俯视图是由一个 半圆与其直径组成的图形,则此几何体的体积是____12. 在中,内角,,所对的边分别是,,3))((bc a c b c b a =-+++则的值为_________13.极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.设直线与曲线交于两点,弦长___________ 14.若函数的图象与函数的图象恰有五个交点,则实数的取值范围是________.三、解答题:本大题6小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数2()2sin cos 23cos 3f x x x x =+-.(I)求函数的最小正周期; (II)若006(),,12542f x x πππ⎡⎤-=∈⎢⎥⎣⎦,求的值. 16.(本小题满分13分)国家旅游局确定xx 以“丝绸之路旅游年”为xx 旅游宣传主题,甘肃武威为配合国家旅游局,在每张门票后印有不同的“丝绸之路徽章”。
2021-2022年高三第二次阶段性测试数学理理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,{}22730,N x x x x =++<∈Z ,如果,则等于 A .B .C .或D .2.已知函数,则的值是A .B .C .D .3.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩(如图),要测算两点的距离,测量人员在岸边定出基线,测得,105,45ABC BCA ∠=∠=,就可以计算出两点的距离为A .B .C . D.4.设,是两条不同的直线, ,,是三个不同的平面.有下列四个命题: ①若,,,则; ②若,,则; ③ 若,,,则;④ 若,,,则. 其中错误..命题的序号是 A .①③ B.①④ C .②③④ D .②③ 数学试题第1页(共5页)B AC5.函数的图象大致是6.函数的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为该等比数列的公比的数是A .B .C .D .7.已知向量(3,1),(0,1),(,3),2,a b c k a b c k ===+=若与垂直则( )A .—3B .—2C .1D .-1 8.的值是A.3+ln2B.C.4+ln2D.9.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为 A . B . C . D .10.下列命题中为真命题的是 A .若B .直线为异面直线的充要条件是直线不相交C .“”是“直线与直线互相垂直”的充要条件D .若命题2:R,10p x x x ∃∈-->“”,则命题的否定为:“”数学试题第2页(共5页)11.已知各项均为正数的等比数列中,成等差数列,则A.或3B.3C.27D.1或2712.已知定义在R 上的函数满足以下三个条件:①对于任意的,都有;②对于任意的121212,,02,()();x x R x x f x f x ∈≤<≤<且都有③函数的图象关于y 轴对称,则下列结论中正确的是( )A .B .C .D .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知向量a =(2cos α,2sin α),b =(2cos β,2sin β),且直线2x cos α-2y sin α+1=0与圆(x -cos β)2+(y +sin β)2=1相切,则向量a 与b 的夹角为________.14.已知22334424,39,41633881515+=⨯+=⨯+=⨯,…,观察以上等式,若(m ,n ,k均为实数),则m+n -k=_______.15.设、满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,则目标函数的最大值为 .16.定义在R 上的函数,对,满足()()()()f 1x f 1x ,f x f x -=+-=-,且在上是增函数.下列结论正确的是___________.(把所有正确结论的序号都填上) ①;数学试题第3页(共5页)②;③在上是增函数; ④在处取得最小值. 三、解答题:(本大题共6小题,共74分。
2021年高三第二次(5月)统一考试数学理试题 含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合,,则=A .B .C .D .2.复数(为虚数单位)在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.执行如图所示的程序框图,输出的值为A .6B .10C .14D .15 4.已知非零向量,,“∥”是 “∥”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是; ②图象关于直线对称;③在区间上是单调递增函数”的一个函数可以是A .B .C .D .6.已知函数且的最大值为,则的取值范围是A .B .C .D .7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A. B. C. D.8.已知正方体的棱长为2,是棱的中点,点在正方体内部或正方体的表面上,且∥平面,则动点的轨迹所形成的区域面积是A. B. C. D.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线的渐近线方程是;若抛物线的焦点与双曲线的一个焦点重合,则.10.如图,为⊙外一点,是⊙的切线,为切点,割线与⊙相交于两点,且,为线段的中点,的延长线交⊙于点.若,则的长为______;的值是.11.已知等边的边长为3,是边上一点,若,则的值是______.12.已知关于的不等式组0,,2,2xy xx yx y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域为三角形区域,则实数的取值范围是.13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设表示前年的纯利润(=前年的总收入-前年的总费用支出-投资额),则(用表示);从第年开始盈利.14.在平面直角坐标系中,以点,曲线上的动点,第一象限内的点,构成等腰直角三角形,且,则线段长的最大值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在中,角,,的对边分别是,,,已知,.(Ⅰ)求的值;(Ⅱ) 若角为锐角,求的值及的面积.16.(本小题满分13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为,五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示. (Ⅰ)据此估计此人260个工作日中早高峰 时段(早晨7点至9点)中度拥堵的 天数;(Ⅱ)若此人早晨上班路上所用时间近似为: 畅通时30分钟,基本畅通时35分钟, 轻度拥堵时40分钟,中度拥堵时50 分钟,严重拥堵时70分钟,以直方图 中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间的数学期望.17.(本小题满分14分)如图1,在等腰梯形中,,,, 为中点,点分别为的中点.将沿折起到的位置,使得平面平面(如图2). (Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)侧棱上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.交通指数值0.25 0.10 0.05 0.152 4 6 8 10 0.20 13 5 7 918. (本小题满分13分)已知函数,.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若曲线上的点都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,试求的取值范围.19.(本小题满分14分)在平面直角坐标系中,点在椭圆上,过点的直线的方程为. (Ⅰ)求椭圆的离心率;(Ⅱ)若直线与轴、轴分别相交于两点,试求面积的最小值;ECDBA图1BFOCDA 1E 图2(Ⅲ)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点三点共线.20.(本小题满分13分)已知集合,且.若存在非空集合,使得,且,并,都有,则称集合具有性质,()称为集合的子集.(Ⅰ)当时,试说明集合具有性质,并写出相应的子集;(Ⅱ)若集合具有性质,集合是集合的一个子集,设,求证:,,都有;(Ⅲ)求证:对任意正整数,集合具有性质.北京市朝阳区xx学年度第二学期高三年级统一考试数学答案(理工类)xx.5一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ) 因为,且,所以.因为,由正弦定理,得.…………………6分(Ⅱ) 由得.由余弦定理,得.解得或(舍负).所以.…………………13分解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25,据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为260×0.25=65天. ……………………………………………………5分(Ⅱ)由题意可知的可能取值为.且;;;;;所以300.05+350.1+400.45+500.25+700.15=46EX=⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形中,由,,,为中点,所以为等边三角形.如图2,因为为的中点,所以.又因为平面平面,且平面平面,所以平面,所以.………4分ECD BA图1FODA1E(Ⅱ)连结,由已知得,又为的中点,图2所以.由(Ⅰ)知平面, 所以, 所以两两垂直.以为原点,分别为轴建立空间直角坐标系(如图). 因为,易知.所以1(00(100),(0(100)A B C E -,,,,,所以111(103),(033),(10A B AC A E =-=-=-,,,,,. 设平面的一个法向量为, 由 得 即 取,得.设直线与平面所成角为,则1sin cos ,5A B θ=〈〉===n. 所以直线与平面所成角的正弦值为. (9)分 (Ⅲ)假设在侧棱上存在点,使得平面.设,.因为,所以(10(0()BP λ=-+=-. 易证四边形为菱形,且,又由(Ⅰ)可知,,所以平面. 所以为平面的一个法向量.由()(1,130BP CE λ⋅=-⋅-=-=,得. 所以侧棱上存在点,使得平面,且. …………14分 18.(本小题满分13分)D解:(Ⅰ)当时, ,..则,而.所以曲线在点(1,)处的切线方程为,即.…………………………………………………………………………4分(Ⅱ)依题意当时,曲线上的点都在不等式组12,,32xx yy x⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当时,恒成立.设,.所以.(1)当,即时,当时,,为单调减函数,所以.依题意应有解得所以.(2)若,即时,当,,为单调增函数,当,,为单调减函数.由于,所以不合题意.(3)当,即时,注意到,显然不合题意.综上所述,.…………………………………………13分19.(本小题满分14分)解:(Ⅰ)依题意可知,,所以椭圆离心率为.…………… 3分(Ⅱ)因为直线与轴,轴分别相交于两点,所以.令,由得,则.令,由得,则.所以的面积.因为点在椭圆上,所以.所以.即,则.所以.当且仅当,即时,面积的最小值为. … 9分 (Ⅲ)①当时,.当直线时,易得,此时,.因为,所以三点共线. 同理,当直线时,三点共线.②当时,设点,因为点与点关于直线对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点. 又因为,, 且22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以.所以点三点共线.综上所述,点三点共线. …………………………………14分 20.(本小题满分13分) 证明:(Ⅰ)当时,,令,,则, 且对,都有,所以具有性质.相应的子集为,. ………… 3分 (Ⅱ)①若,由已知,又,所以.所以.②若,可设,,且,此时31(3)(3)132n nnn x y s r s r --=+-+=-≤-<.所以,且.所以. ③若, ,,则313331(3)()3(1)3222n n n nnnx y s y s y -+--=+-=-+≥-+=>, 所以.又因为,所以.所以. 所以.综上,对于,,都有. …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当时,命题成立,即集合具有性质. (2)假设()时,命题成立.即,且,,都有. 那么 当时,记,, 并构造如下个集合:,,,,1313131{1,2,,21}222k k k k S +---''=++⨯+,显然.又因为,所以112131{1,2,3,,}2k kk S S S S ++-''''''''=.下面证明中任意两个元素之差不等于中的任一元素. ①若两个元素,, 则, 所以.②若两个元素都属于,由(Ⅱ)可知,中任意两个元素之差不等于中的任一数. 从而,时命题成立.综上所述,对任意正整数,集合具有性质.………………………13分。
2021年高三上学期第二次考试数学(理)试题含答案一、选择题(每小题5分,共60分)1.已知集合,,=()A.B.C.N D.R2.若,其中,则()A. B. C. D.3.已知,,,则下列关系中正确的是()A.a>b>c B.b>a>cC.a>c>b D.c>a>b4.已知定义域为的函数不是偶函数,则下列命题一定为真命题的是()A.,B.,C.,D.,5.已知在R上是奇函数,且满足,当时,,则()A.-12B. -16C. -20D. 06.设,则对任意实数,,“”是“”的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件7.函数的值域为()A.B.C.D.8.在△ABC中,角所对的边分别为,已知=,=,,则C=()A. 30°B. 45°C. 45°或135°D. 60°9. 已知是定义在的函数,且. 满足,则下列不等式正确的是( )A. B.C. D.10.如图所示,函数离轴最近的零点与最大值均在抛物线上,则=( )A.B.C.D.11.已知函数,,,则的最大值为( )A .B .1C .2D . 12.设函数 ,则函数的各极小值之和为( )A .B .C .D .二、填空题(每小题5分,共20分)13.的值等于 . 14.已知,且,则lg(8sin 6cos )lg(4sin cos )αααα+--= .15. 若函数有且只有个不同零点,则实数的取值范围是 .16.函数的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为,则= .三、解答题(本大题共6小题,请写出必要的解题步骤和文字说明)17.(本小题满分10分)设函数.(1)解方程;(2)设不等式的解集为,求函数()的值域.18.(本小题满分12分) 已知函数1)22cos()62cos()62cos()(++--++=πππx x x x f . (1)求函数的最小正周期和单调递减区间;(2)若将函数的图象向左平移个单位后,得到的函数的图象关于直线对称,求实数的最小值.19.(本小题满分12分)(1)已知,,求的值;(2)已知,均为锐角,且,,求.20.(本小题满分12分)已知函数().(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;21.(本小题满分12分)如图,在△ABC中,,BC=2,点D在边AB上,AD=DC,DE⊥AC,E为垂足.(1)若△BCD的面积为,求CD的长;(2)若ED=,求角A的大小.22.(本小题满分12分)设函数(1)若x=2是函数f(x)的极值点,1和是函数的两个不同零点,且,求。
2021-2022年高三第二次(5月)统一练习数学理试题含答案数学试卷(理科)考生须知:1.本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2.答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3.答题卡上第I卷(选择题)必须用2B铅笔作答,第II卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4.修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5.考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)复数A.B.C.D.(2)已知双曲线的一个焦点为,实轴长为6,则双曲线的渐近线方程为A. B. C. D.C(3) 若满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则的最小值为A . B. C. D.(4)设是两个不同的平面,是直线且“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 (5)如图,过点和圆心的直线交于两点(),与切于点,于,则的长度为A. 1B.C. 2D.(6)执行如图所示的程序框图, 如果输出的值为3,则判断框 内应填入的判断条件为A. B. C . D .(7)已知函数f (x ) 是定义在上的奇函数, 当时,f (x ) 的图象如图所示,那么满足不等式 的的取值范围是俯视图侧(左)视图111正(主)视图11DCAe 2e 1BAOA. B. C. D.(8)将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为,并且 若将点到正八角星16个顶点的向量,都写成为的形式,则的最大值为A . B. 2 C. D.第Ⅱ卷(非选择题 共110分) 二、填空题(本大题共6小题,每小题5分,共30分)(9)已知是等比数列()的前项和,若,公比 ,则数列的通项公式 . (10)在极坐标系中,为极点,点为直线上一点,则 的最小值为________.(11) 如图,点是的边上一点,7,2,1,45.AB AD BD ACB ︒===∠=那么___________;____________.(12) 某三棱锥的三视图如图所示,则该三棱 锥中最长棱的棱长为_________.(13)xx 3月12日,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园一带一谷”七大板块.“三馆”即精品农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“一带”即草莓休闲体验带;“一谷”即延寿生态观光谷.某校学生准备去参观,由于时间有限,他们准备选择其中的“一馆一园一带一谷”进行参观,那么他们参观的不同路线最多有______种. (用数字作答)(14)已知数列中,*11,1,().3,(1),2n n n n n a a a n a a +->⎧⎪=∈⎨-+≤⎪⎩N ①若则_________;②记则____________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><的部分图象如图所示. (Ⅰ)写出函数的解析式及的值; (Ⅱ)求函数在区间上的最大值与最小值.(16)(本小题满分13分)为了解高一新生数学基础,甲、乙两校对高一新生进行了数学测试. 现从两校各随机抽取10名新生的成绩作为样本,他们的测试成绩的茎叶图如下:(I ) 比较甲、乙两校新生的数学测试样本成绩的平均值及方差的大小;(只需要写出结论)(II ) 如果将数学基础采用A 、B 、C 等级制,各等级对应的测试成绩标准如下表:(满分100分,所有学生成绩均在60分以上)测试成绩 基础等级ABC甲校 乙校5 1 9 1 1 24 3 3 8 4 77 4 3 2 7 7 88 6 5 7 8C 1B 1A 1F EDCBA事件发生的概率.从甲、乙两校新生中各随机抽取一名新生,求甲校新生的数学基础等级高于乙校新生的数学基础等级的概率.(17)(本小题满分14分) 如图,三棱柱中,垂直 于正方形所在平面,,为中点,为线段上的一点(端点除外), 平面与交于点.(I )若不是的中点,求证:;(II )若是的中点,求与平面所成角的正弦值; (III )在线段上是否存在点,使得若存在,求出的值,若不存在,请说明理由.(18)(本小题满分13分)已知函数,2()(,,)g x x bx c a b c =-++∈R ,且曲线与曲线在它们的交点处具有公共切线. 设. (I )求的值,及的关系式; (II )求函数的单调区间;(III )设,若对于任意,都有,求的取值范围.(19)(本小题满分13分)已知椭圆:的焦距为,点在椭圆上,过原点作直线交椭圆于、两点,且点不是椭圆的顶点,过点作轴的垂线,垂足为,点是线段的中点,直线交椭圆于点,连接.(Ⅰ)求椭圆的方程及离心率; (Ⅱ)求证:.(20)(本小题满分14分)定义表示中的最大值. 已知数列,,,其中,, .记. (I )求;(II )当时,求的最小值; (III ),求的最小值.昌平区 xx 高三年级第二次统一练习数学试卷参考答案及评分标准 (理科) xx.5一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符二、填空题(本大题共6小题,每小题5分,共30分) (9) (10) (11) ; (12) (13)144 (14)三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(I )023()2sin(2),.324f x x x ππ=+=…………………7分 (II )由ππππ5π[, ],2[, ]44366x x ∈-+∈-, ……………………9分当时,即,当时,即, ……………………13分(16)(本小题满分13分)解: (I )两校新生的数学测试样本成绩的平均值相同;甲校新生的数学测试样本成绩的方差小于乙校新生的数学测试样本成绩的方差. ……………………6分(II )设事件=“从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级”.设事件=“从甲校新生中随机抽取一名新生,其数学基础等级为A ”, 设事件=“从甲校新生中随机抽取一名新生,其数学基础等级为B ”, 设事件=“从乙校新生中随机抽取一名新生,其数学基础等级为B ”, 设事件=“从乙校新生中随机抽取一名新生,其数学基础等级为C ”, 根据题意,所以111222111222()()()()()()()()()()P D P E F P E F P E F P E P F P E P F P E P F =++=++131373335105101010100=⨯+⨯+⨯=. 因此,从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级的概率为 ……………………13分(17)(本小题满分14分)(I )证明:连接,交于点,连接.在三棱柱中, 为中点, 且为中点,所以.因为,所以. ………………2分 由已知,平面与交于点, 所以从而, 又,所以11BC DAB EF EF =平面平面,所以. ……………………4分(II) 建立空间直角坐标系 如图所示.11(2,2,0),(2,0,0),(0,2,0),(0,0,0),1(0,2,1),(0,0,1),(0,1,),(1,2,0).2A A C CB B E D 1 111(2,1,),(0,2,1),(1,2,0)2AE C B C D =--==.设平面的法向量为 由得,令,得. ……………………6分421cos ,63||||AE n AE n AE n <>== ……………………8分所以,与平面所成角的正弦值为. ……………………9分 (III) 在线段上存在点,使得且.理由如下:假设在线段上存在点,使得设,.则,1111(0,2,1)(0,,)y z y z λ--=--.112,11,1y z λλ⎧=⎪⎪+⎨⎪=⎪+⎩. ………………11分 ,. ,解得: . ………………13分 所以,在线段上存在点,使得且.………………14分 (18)(本小题满分13分) 解:(I )因为函数,,所以函数,.又因为曲线与曲线在它们的交点处具有公共切线,所以,即 ………………4分 (II )由已知,2()()()e 1axh x f x g x x ax =-=+--. 所以.设()'()e 2axF x h x a x a ==+-,所以, R ,,所以在上为单调递增函数. ……………6分 由(I )得,所以,即0是的零点.所以,函数的导函数有且只有一个零点0.…………………………7分 所以及符号变化如下,(III )由(II )知当 时,是增函数. 对于任意,都有等价于max min ()()(1)(0)e e 1a h x h x h h a -=-=-≤-,等价于当时,,因为,所以在上是增函数,又,所以. ……………13分(19)(本小题满分13分) 解:(I )由题意知,则,所以椭圆的方程为,椭圆的离心率为. ……………5分 (II )设,则由点在椭圆上,所以① ② 点不是椭圆的顶点,②-①得 .法一:又01001000332,,24PB BCy y y yk k x x x x +===+且点三点共线, 所以, 即 所以,2201010101022010*******()4()43()1,3()3()34AB PAy y y y y y y y y k k x x x x x x x x x -+--====⨯-=--+-- 即 . ……………13分法二:由已知与的斜率都存在,2210101022101010PA PB y y y y y y k k x x x x x x -+-==-+-221022103()344x x x x --==--又得则,即 . ……………13分(20)(本小题满分14分)解:(I )由题意,{}10002000max max n n a ,b ,n kn ⎧⎫=⎨⎬⎩⎭, 因为1000200010002--=(k )n kn kn, 所以,当时,,则,当时,,则, 当时,,则. ……………4分(II )当时,{}{}10001500max max max 2003n n n n n n d a ,b ,c a ,c ,n n ⎧⎫===⎨⎬-⎩⎭, 因为数列为单调递减数列,数列为单调递增数列, 所以当时,取得最小值,此时. 又因为,而{}44444444250max 11d a ,c a ===,,有. 所以的最小值为. ……………8分(III )由(II)可知,当时,的最小值为. 当时,{}{}2000750max max max 100n n n n n n d a ,b ,c b ,c ,n n ⎧⎫===⎨⎬-⎩⎭.因为数列为单调递减数列,数列为单调递增数列, 所以当时,取得最小值,此时. 又因为, 而,.此时的最小值为. ⑵当时,150********200(1)200450≥=-+--k n n n,,所以{}{}1000375max max max 50n n n n n n d a ,b ,c a ,c ,n n ⎧⎫==≥⎨⎬-⎩⎭.设,因为数列为单调递减数列,数列为单调递增数列, 所以当时,取得最小值,此时. 又因为, 而,.此时的最小值为. 综上,的最小值为. ……………14分39454 9A1E 騞25251 62A3 抣28376 6ED8 滘356058B15 謕v` 39901 9BDD 鯝| XZ3 36775 8FA7 辧。
2021年高三第二次综合练习理科数学含解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合,集合,则=A. B. C. D.【答案】D【解析】,所以,选D.(2)若,则实数的值为A. B. C. D.【答案】B【解析】123211111()d()03232x mx x x mx m+=+=+=⎰,解得,选B.(3)执行如图所示的程序框图.若输出的结果是,则判断框内的条件是A. ?B. ?C. ?D. ?【答案】C【解析】第一次循环,,不满足条件,循环。
第二次循环,,不满足条件,循环。
第三次循环,,不满足条件,循环。
第四次循环,,满足条件,输出。
所以判断框内的条件是,选C.(4)若双曲线的渐近线与抛物线有公共点,则此双曲线的离心率的取值范围是A.B.C.D.【答案】A【解析】双曲线的渐近线为,不妨取,代入抛物线得,即,要使渐近线与抛物线有公共点,则,即,又,所以,所以。
所以此双曲线的离心率的取值范围是,选A.(5)某三棱锥的三视图如图所示,则该三棱锥的体积为A.B.C.D.【答案】A【解析】由题设条件,此几何几何体为一个三棱锥,如图红色的部分.其中高为1,底面是直角边长为1的等腰直角三角形,所以底面积为,所以三棱锥的体积为,选A.(6)某岗位安排3名职工从周一到周五值班,每天只安排一名职工值班,每人至少安排一天,至多安排两天,且这两天必须相邻,那么不同的安排方法有A.种B.种C.种D.种【答案】C【解析】由题意可知,3名职工中只有一人值班一天,此时有种,把另外2人,排好有3个空,将值班一天的这个工人,从3个空中,选一个,另外2人,全排有.所以不同的安排方法共有,选C.(7)已知函数,定义函数给出下列命题:①;②函数是奇函数;③当时,若,,总有成立,其中所有正确命题的序号是当A.②B.①②C.③D.②③【答案】D【解析】①因为,而,两个函数的定义域不同,所以①不成立。
绝密★启用前 2021.3.2 15:00-17:00河北衡水中学2021届全国高三第二次联合考试数学试卷总分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共4分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12A x x =-≤≤,{}0,2,4B =,则A B =( )A.{}0,2,4B.{}0,2C.{}04x x ≤≤D.{}124x x x -=≤≤或 2.已知复数32i32i+=-z ,则z 在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在平面直角坐标系中,O 为坐标原点,()4,3A ,(B -,则AOB ∠的余弦值为( )4.已知a ,b 为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是( ) A.若//αβ,a α⊂,b β⊂,则//a b B.若a α⊂,b β⊂,//a b ,则//αβ C.若a αβ=,b β⊂,b a ⊥,则αβ⊥D.若l αβ=,αβ⊥,a α⊂,a l ⊥,//a b ,则b β⊥5.在五边形ABCDE 中EB a =,AD b =,M ,N 分别为AE ,BD 的中点,则MN =( ) A.3122a b + B.2133a b + C.1122a b + D.3144a b + 6.命题:p 关于x 的不等式210ax ax x +--<的解集为()1,1,a ⎛⎫-∞-+∞ ⎪⎝⎭的一个充分不必要条件是( )A.1a -≤B.0a >C.20a -<<D.2a -<7.面对全球蔓延的疫情,疫苗是控制传染的最有力技术手段.科研攻关组第一时间把疫苗研发作为重中之重,对灭活疫苗、重组蛋白疫苗、腺病毒载体疫苗、减毒流感病毒载体疫苗和核酸疫苗5个技术路线并行研发,组织了12个优势团队进行联合攻关.其中有5个团队已经依据各自的研究优势分别选择了灭活疫苗、重组蛋白疫苗、腺病毒载体疫苗、减毒流感病毒载体疫苗和核酸疫苗这5个技术路线,其余团队作为辅助技术支持进驻这5个技术路线.若保障每个技术路线至少有两个研究团队,则不同的分配方案的种数为( ) A.14700 B.16800 C.27300 D.504008.若不等式1cos cos308m x x --≤对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则实数m 的取值范围是( )A.9,4⎛⎤-∞- ⎥⎝⎦B.(],2-∞-C.9,4⎛⎤-∞ ⎥⎝⎦D.9,8⎛⎤-∞ ⎥⎝⎦二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知11220log log 1a b <<<,则下列说法正确的是( )A.22114a b >>>B.1121a b>>>C.11a bb a --> 1e e b -> 10.将函数()2cos f x x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将得到的图象向左平移π个单位长度,得到函数()g x 的图象,则下列说法正确的有( ) A.()g x 为奇函数 B.()g x 的周期为4πC.x ∀∈R ,都有()()g x g x +π=π-D.()g x在区间24,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且是小值为11.提丢斯·波得定律是关于太阳系中行星轨道的一个简单的几何学规则,它是在1766年由德国的一位中学老师戴维斯·提丢斯发现的,后来被柏林天文台的台长波得归纳成一条定律,即数列{}n a :0.4,0.7,1.6,2.8,5.2,10,19.6,…,表示的是太阳系第n 颗行星与太阳的平均距离(以天文单位A.U.为单位).现将数列{}n a 的各项乘以10后再减4,得到数列{}n b ,可以发现数列{}n b 从第3项起,每项是前一项的2倍,则下列说法正确的是( )A.数列{}n b 的通项公式为232n n b -=⨯B.数列{}n a 的第2021项为20200.320.4⨯+C.数列{}n a 的前n 项和10.40.320.3n n S n -=+⨯-D.数列{}n nb 的前n 项和()1312n n T n -=-⋅12.在一张纸上有一圆()()222:20C x y r r ++=>与点()(),02M m m ≠-,折叠纸片,使圆C 上某一点M '好与点M 重合,这样的每次折法都会留下一条直线折痕PQ ,设折痕PQ 与直线M C '的交点为T ,则下列说法正确的是( )A.当22r m r ---+<<时,点T 的轨迹为椭圆B.当1r =,2m =时,点T 的轨迹方程为2213y x -=C.当2m =,12r ≤≤时,点T 的轨迹对应曲线的离心率取值范围为[]2,4D.当r =2m =时,在T 的轨迹上任取一点S ,过S 作直线y x =的垂线,垂足为N ,则SON △(O 为坐标原点)的面积为定值三、填空题:本题共4小题,每小题5分,共20分.13.正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践中,在现实生活中,很多随机变量都服从或近似服从正态分布.在某次大型联考中,所有学生的数学成绩()~100,225X N .若成绩低于10m +的同学人数和高于220m -的同学人数相同,则整数m 的值为_______.14.已知抛物线24x y =,其准线与y 轴交于点P ,则过点P 的抛物线的切线方程为_______. 15.在ABC △中,a ,b ,c 分别是内角A ,B ,C 的对边,其中3A π=,4b c +=,M 为线段BC 的中点,则AM 的最小值为_______.16.已知四棱锥P ABCD -的底面为正方形,PA PB PC PD ===,2AB =,若四棱锥P ABCD -的体积为43,则以点P 为球心,PAB 交线的长度约为_______,该四棱锥P ABCD -外接球的体积为_______.(参考数据tan35︒≈)(本题第一空3分,第二空2分). 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在①ABC △的外接圆面积为3π②ADC △,③BDC △的周长为5补充在下面的问题中,并给出解答.问题:在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,D 是AB 边上一点.已知13AD AB =,3sin sin 4A C =,cos23cos 1B B +=,若_______,求CD 的长.注:如果选择多个条件分别解答,按第一个解答计分. 18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且4520.S S ==-(1)求数列{}n a 的通项公式;(2)已知数列{}n b 是以4为首项,4为公比的等比数列,若数列{}n a 与{}n b 的公共项为m a ,记m 由小到大构成数列{}n c ,求{}n c 的前n 项和n T . 19.(本小题满分12分)如图,已知圆台1O O 的下底面半径为2,上底面半径为1,母线与底面所成的角为3π,1AA ,1BB 为母线,平面11AAO O ⊥平面11,BB O O M 为1BB 的中点,P 为AM 上的任意一点.(1)证明:1BB OP ⊥;(2)当点P 为线段AM 的中点时,求平面OPB 与平面OAM 所成锐二面角的余弦值. 20.(本小题满分12分)国务院办公厅印发了《关于防止耕地“非粮化”稳定粮食生产的意见》,意见指出要切实稳定粮食生产,牢牢守住国家粮食安全的生命线.为了切实落实好稻谷、小麦、玉米三大谷物种植情况,某乡镇抽样调查了A 村庄部分耕地(包含永久农田和一般耕地)的使用情况,其中永久农田100亩,三大谷物的种植面积为90亩,棉、油、蔬菜等的种植面积为10亩;一般耕地50亩,三大谷物的种植面积为30亩,棉、油、蔬菜等的种植面积为20亩.(1)以频率代替概率,求A 村庄每亩耕地(包括永久农田和一般耕地)种植三大谷物的概率;(2)上级有关部门要恪促落实整个乡镇三大谷物的种植情况,现从本乡镇抽测5个村庄,每个村庄的三大谷物的种植情况符合要求的概率均为A 村庄每亩耕地(永久农田和一般耕地)种植三大谷物的概率.若抽测的村庄三大谷物的种植情况符合要求,则为本乡镇记1分,若不符合要求,记-1分.X 表示本乡镇的总积分,求X 的分布列及数学期望;(3)目前在农村的劳动力大部分是中老年人,调查中发现,80位中老年劳动力中有65人种植三大谷物,其余种植棉、油、蔬菜等农作物;20位青壮年劳动力中有15人种植需要技术和体力,短期收益大的棉、油、蔬菜等农作物,其余种植三大谷物.请完成下表,并判断是否有99.9%的把握认为种植作物的种类与劳动力的年龄层次有关?附:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,P ⎛ ⎝⎭满足12PF PF +2a =,且以线段12F F 为直径的圆过点.P (1)求椭圆C 的标准方程;(2)O 为坐标原点,若直线l 与椭圆C 交于M ,N 两点,直线OM 的斜率为1k ,直线ON 的斜率为2k ,当OMN △的面积为定值1时,12k k 是否为定值?若是,求出12k k 的值;若不是,请说明理由.22.(本小题满分12分)设函数()2ln f x x x x =++,()e x g x x=.(1)若()()()e xh x mf x g x x==-,m ∈R ,试判断函数()h x 的极值点个数;(2)设()()()222x x g x f x kx x xϕ=--++,若()1x ϕ≥恒成立,求实数k 的取值范围. 参考答案及解析河北衡水中学2021届全国高三第二次联合考试·数学1.B【解析】集合B 中的元素在区间[1,2]-内的只有0,2, 所以{0,2}A B ⋂=. 2.D【解析】232(32)51232(32)(32)1313i i z i i i i ++===+--+,所以5121313z i =- 所以其在复平面内对应的点位于第四象限. 3.C【解析】作出平面直角坐标系,如图.设,,xOB xOA ∠α∠β==则.sin AOB ∠αβα=-=134cos ,sin ,cos .255αββ=-==所以()cos αβ-=143cos cos sin sin 255αβαβ+=-⨯+=4.104.D【解析】对于,A 如图,在长方体1111ABCD A B C D -中,平面1111//A B C D 平面11,ABCD A B ⊂平面1111,A B C D AC ⊂平面,ABCD 但11A B 与AC 不平行,故A 错误;对于,B 如图11,A B ⊂平面11,A B BA DC ⊂平面11,//,ABCD A B DC 但平面11A B BA 与平面ABCD 不平行,故B 错误;对于,C 如图,平面11ABC D ⋂平面,ABCD AB BC =⊂平面,ABCD 且,BC AB ⊥但平面ABCD 与平面11ABC D 不互相垂直,故C 错误;对于D ,由平面与平面垂直的性质定理,得,a β⊥又//,a b 所以,b β⊥故D 正确.5.C【解析】12MN MA AB BN EA AB =++=++ ()()11112222BD EA AB AB BD EB =+++=+111222AD a b =+ 6.D【解析】由题意知命题p 即()()110ax x -+<的解集为()1,1,,a ∞∞⎛⎫--⋃+⎪⎝⎭其充要条件为 0,11,a a <⎧⎪⎨-⎪⎩得 1.a -因为(),2∞-- (],1∞-- 所以2a <-是1a -的一个充分不必要条件. 7.B【解析】将其余的7个团队分成5个组,然后再分配给各技术路线.第一类方案:按3,1,1,1,1分组,先从7个队中选择3个队,然后全排,有3575C A 种.第二类方案:按2,2,1,1,1分组,先分组再分配,共有22575522C C A A 种. 综上,由分类加法计数原理知,共有223557575522C C C A A A +=16800种分配方案. 8.A【解析】因为0,,2x π⎛⎫∈ ⎪⎝⎭所以()cos 0,1,x ∈原不等式可变形为()11cos3cos 288cos cos x x x mx x +++== 21cos cos2sin sin2184cos 3.cos 8cos x x x x x xx-+=+-令()cos 0,1,t x =∈则()()2143,8g t t g t t='+-= 33322211641488888t t t t t t ⎛⎫- ⎪-⎝⎭-==⨯=⨯22114416t t t t⎛⎫⎛⎫-++ ⎪⎪⎝⎭⎝⎭.当10,4t ⎛⎫∈ ⎪⎝⎭时(),0,g t '<()g t 单调递减;当1,14t ⎛⎫∈ ⎪⎝⎭时()(),0,g t g t >'单调递增,所以()19.44g t g ⎛⎫=-⎪⎝⎭又min (),m g t 所以9.4m - 二、选择题 9.ACD【解析】已知11220log log 1,a b <<<因为y =12log x 在区间()0,∞+上单调递减,所以12b a <<<1,所以2211,4b a <<<故A 正确;因为函数1y x=在 区间()0,∞+上单调递减,因为11,2b a <<<所以2>111,b a>>故B 错误; 因为11a bb a -=--()()()()()()()()22111111a b a b a a b b b a b a ------==----()()()()1.11a b a b b a -+---又11,2b a <<<所以1,a b +> ()()()()10,11a b a b b a -+->--故C 正确;因为12b ->->1,a ->-函数xy e =为单调递增函数,所以1e<a be e --<<故D 正确. 10.ABC【解析】将函数()2cos f x x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得y =2cos,2x再将得到的图象向左平移π个单位长度, 得()()2cos 2sin ,22x x g x g x π+⎛⎫==-⎪⎝⎭为奇函数, 故A 正确;4π为()g x 的周期,故B 正确;又()g x =2sin2x-的图象关于直线x π=对称,故C 正确; 令322,222x k k ππππ++解得43k x πππ++4,,k k Z π∈ 所以()g x 在区间[]4,34(k k k ππππ++∈Z )上单调递增,取0,k =得[],3,ππ所以()g x 在区间2,3ππ⎡⎤-⎢⎥⎣⎦上单调递减,在区间4,3ππ⎡⎤⎢⎥⎣⎦上单调递增, 所以最小值为()2,g π=-故D 错误.11.CD【解析】数列{}n a 各项乘以10再减4得到数列{}:0,3,6,12,24,48,96,192,,n b故该数列从第2项起构成公比为2的等比数列,所以n b =20,1,32,2,n n n -=⎧⎨⨯⎩故A 错误; 从而410n n b a +==20.4,1,0.320.4,2,n n n -=⎧⎨⨯+⎩所以201920210.320.4,a =⨯+ 故B 错误;当1n =时11,0.4S a ==;当2n 时,n S =()012120.40.3222n n a a a -+++=+++++()11120.410.40.30.40.3212n n n n n ----=+⨯=+⨯--0.3.当1n =时1,0.4S =也符合上式,所以n S =10.40.320.3,n n -+⨯-故C 正确;因为n nb =20,1,32,2,n n n n -=⎧⎨⨯⎩所以当1n =时11,0,T b ==当n 2时(0123,230322n n T b b b nb =++++=+⨯+)(122132422.23223n n n T -⨯+⨯++⨯=⨯+⨯ )2312422,n n -+⨯++⨯所以03(2n T -=++)112212222223212n n n n n ---⎛-+++-⨯=+-⨯ -⎝)()112312,n n n --=-⨯所以()1312.n n T n -=-⨯又当1n =时1,T 也满足上式,所以()31n T n =-⨯12n -,故D 正确.12.ACD【解析】当22r m r --<<-+时,点M 在圆C 内,此时有,TM TC CM r CM '+==>故T 的轨迹是以,C M 为焦点的椭圆,故A 正确;当1,r =2m =时,点M 在圆C 外,此时有|||||TM TC CM r CM -==<'故T 的轨迹是以,C M 为焦点的双曲线,其中21,24,a r c CM ====故双曲线方程为221,11544x y -=故B 错误;当2m =时,12r 时,T 的轨迹是以,C M 为焦点的双曲线, 方程为2222444x y r r-=-1,所以离心率24,2c e r a r ===当12r 时,2e 4,故C 正确; 当2r m ==时,T 的轨迹方程为222,x y -=设(),,S p q 则222,p q -=直线SN 的方程为(),y q x p -=--它与y x =的交点N 的坐标为,,22p q p q ++⎛⎫ ⎪⎝⎭所以,ON p q SN=+=所以22124SNOp q SON SN -=⨯⋅==12为定值,故D 正确. 三、填空题 13.70【解析】由题意(10)(2P x m P x m <+=>-20).又()100,225,X N ~所以10220m m ++-=200,所以70.m =14.10,x y --=或10x y ++=【解析】抛物线2x =4y 的准线方程为1,y =-所以()0,1.P -设切点坐标为200,,4x x ⎛⎫ ⎪⎝⎭切线斜率为200014,2x x k x +==解得0 2.x =±当02x =时,1,k =切线方程为1x y --=0;当02x =-时,1,k =-切线方程为10.x y ++=【解析】AM AM ⎛===2=因为4b c += 4,4,bcbc --当且仅当2b c ==时,1642-=;92π 【解析】42,3P ABCD AB V -==四棱锥 所以四棱锥P ABCD -的高 1.h =易知侧面PAB 底边AB ,所以球面与侧面PAB 的交线为弧线,如图,且长度352.180l π⨯≈=设四棱锥 P ABCD -外接球的球心为,O 则O 在四棱锥P ABCD -的高线上,设外接球的半径为,R 则22(1)R -+=2,R 解得33439,.2322O R V ππ⎛⎫===⎪⎝⎭球四、解答题17.解:因为cos23cos 1B B +=, 所以22cos 3cos 20B B +-=解得1cos 2B =或cos 2(B =-舍去), 所以在ABC 中,3B π=.因为23sin sin sin ,4A CB ==所以2.b ac = 所以由余弦定理得22222cos b a c ac B a =+-=+2c ac -又2,b ac =所以2220,a c ac +-=即a c =,所以ABC 为等边三角形.因为1,3AD AB =所以在ADC 中,由余弦定理得CD =3a =选择条件①:由ABC 的外接圆面积为3,π得2R =所以sin3aπ=所以 3.a =故CD =.选择条件②:由ADC的面积为4, 得ABC,2=解得 3.a =故CD =. 选择条件③:由BDC的周长为5+得253a a ++=+ 所以 3.a =故CD =.18.解:(1)设等差数列{}n a 的公差为d , 因为4520,S S ==-所以5540.a S S =-= 因为53520,S a ==-所以34,a =- 所以53253a a d -==-, 所以()55210.n a a n d n =+-=-(2)由题意知1444.n nn b -=⨯=因为210,m a m =-所以4102104,2n nm m +-==. 因此4104 5.22n nn c +==+所以123444455552222nn T =++++++++= ()4142214545.233n n n n --+=⨯+-19.(1)证明:过点1B 作平面AOB 的垂线,垂足为C , 如图,则C 是OB 的中点,所以 1.BC = 又1,3OBB π∠=所以1 2.BB =连接1,OB 因为12BB OB ==,所以1OBB 为等边三角形.因为点M 为1BB 的中点,所以1.BB OM ⊥因为平面11AA O O ⊥平面11BB O O ,平面11AA O O ⋂平面111,BB O O OO =且1,AO OO ⊥AO ⊂平面11,AA O O所以AO ⊥平面11.BB O O因为1BB ⊂平面11,BB O O 所以1AO BB ⊥.又因为,AO OM O AO ⋂=⊂平面,OMA OM ⊂平面OMA ,所以1BB ⊥平面.OMA因为OP ⊂平面,OMA 所以1.BB OP ⊥(2)解:以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()()(132,0,0,0,2,0,,0,,2A B B M ⎛⎝()333,1,,,1,,,0,2,024444P OP OB ⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭设平面OPB 的一个法向量为(),,n x y z =则0,OP n OB n ⎧⋅=⎪⎨⋅=⎪⎩ 即30,420x y z y ⎧++=⎪⎨⎪=⎩取z =得3,0x y =-=,所以(3,0,,n =-因为1BB ⊥平面OAM ,所以平面OAM 的一个法向量为(10,,BB =-所以111cos ,19BB n BB n BB n ⋅===所以平面OAM 与平面OPB 所成锐二面角的余弦值为1920.解:(1)设事件M 为“耕地(包括永久农田和一般耕地)种植三大谷物”, 则()90304100505P M +==+.所以A 村庄每亩耕地种植三大谷物的概率为4.5(2)由(1)知,每个村庄的三大谷物的种植情况符合要求的概率均为45由题意知,X 的所有可能取值为5,3,1,1,3,5---则()5415153125P X ⎛⎫=-=-= ⎪⎝⎭,()4154443155625P X C ⎛⎫=-=⨯-=⎪⎝⎭ ()232544321155625P X C ⎛⎫⎛⎫=-=⨯-=⎪ ⎪⎝⎭⎝⎭ ()3235441281155625P X C ⎛⎫⎛⎫==⨯-=⎪ ⎪⎝⎭⎝⎭()445442563155625P X C ⎛⎫⎛⎫==⨯-=⎪ ⎪⎝⎭⎝⎭()55541024553125P X C ⎛⎫===⎪⎝⎭则该乡镇的总积分X 的分布列为()()()()5313125625625E X =-⨯+-⨯+-⨯+ 128256102413536256253125⨯+⨯+⨯=2K 的观测值2100(6515155)24.107.80207030k ⨯⨯-⨯=≈⨯⨯⨯ 因为24.10710.828>所以有99.9%的把握认为种植作物的种类与劳动力的年龄层次有关. 21.解:(1)设()()12,0,,0F c F c -以线段12F F 为直径的圆过点P ,所以12PF PF ⊥.所以12PF PF c c ⎛⎛⋅=-+⋅+ ⎝⎭⎝0,=⎭所以c =所以22 3.a b -=将P ⎛ ⎝⎭代人22221(0),x y a b a b +=>>解得224,1,a b ==所以椭圆C 的标准方程为22 1.4x y +=(2)当直线MN 的斜率不存在时,设直线MN 的方程为x m =,设()()00,,,,M m y N m y -则22014m y +=①.又0121,2OMNSy m =⨯=所以221m y =②. 由①②得22012,,2m y ==所以0012y y k k m m -=⋅=2021.4y m -=- 当直线MN 的斜率存在时,设直线MN 的方程为y =()()1122,,,,,kx m M x y N x y +联立221,4x y y kx m ⎧+=⎪⎨⎪=+⎩得()222418440k x kmx m +++-=,22Δ6416160k m =-+>所以2121222844,1414km m x x x x k k--+==++, 所以()()(21212121y y kx m kx m k x x km x =++=++)222224,14m k x m k-+=+ 所以221212212444y y m k k k x x m -==-③.又MN ===点O到直线MN的距离d=所以12OMNS d MN=⨯=.21,14k==+即()()242224441410m k m k-+++=解得22142km+=,代入③式,得221212212444y y m kk kx x m-===-22214412144442kkk+-=-+⨯-综上可知,当OMN的面积为定值1时,12k k是定值14-.22.解:(1)由题意得()2ln(0),xeh x m x x xx x⎛⎫=++->⎪⎝⎭则()22121x xxe eh x mx x x-⎛⎫=+--=⎪⎝⎭'()()()() 2222121,x xm x x e x m x e xx x⎡⎤+---+--⎣⎦=①当0m时(),20xm x e+-<,当()0,1x ∈时()(),0,h x h x >'单调递增,当()1,x ∞∈+时()(),0,h x h x <'单调递减.所以()h x 在1x =处取到极大值,有唯一的极大值点1x = ②当0m >时,()h x 极值点的个数与关于x 的方程 ()20x m x e +-=的正实数根有关,即与函数y m =与函数()()0,2x e y x x ∞=∈++的图 象的交点个数有关.令(),2xe q x x =+则()()210,(2)x e x q x x +=>+' 所以()q x 在区间()0,∞+上单调递增(),q x >()102q = 结合图象知,(i )当102m <时(),20x m x e +-< 恒成立,当()0,1x ∈时()(),0,h x h x >'单调递增,当()1,x ∞∈+时()(),0,h x h x <'单调递减.所以()h x 在1x =处取到极大值,有唯一的极大值点1x = (ii )当12m >时,存在唯一的()00,x ∞∈+,使得0.2xe m x -=+ 若01,x =则,3e m =方程()()2(2x e x m x x ⎡⎤+--⎢⎥+⎢⎥⎣⎦1)0=有两个相等的实数根1. 当()0,1x ∈时()(),0,h x h x <'单调递减,当()1,x ∞∈+时()(),0,h x h x <'单调递减,所以()h x 没有极值.若01,x ≠则,3e m ≠方程()()2(1)02x e x m x x ⎡⎤+--=⎢⎥+⎢⎥⎣⎦有两个不相等的实数根1和0,x 此时()h x 有两个极值点. 综上,当12m 时,函数()h x 有一个极值点, 当12m >且3e m ≠时,函数()h x 有两个极值点, 当3e m =时,函数()h x 无极值点. (2)由题意知(),1x ϕ恒成立即ln x xe x x -+-1kx 恒成立,等价于min ln 1x xe x x k x ⎛⎫--+ ⎪⎝⎭. 令()ln 1,x xe x x m x x--+= 则()22ln x x e x m x x+='令()2ln xx x e x μ=+ 易知()x μ在区间()0,∞+上单调递增, 当11x e =时1122111,110e ee e e e μ-⎛⎫=-=-< ⎪⎝⎭, 当21x =时(),10e μ=>所以()x μ在区间(0,1)上存在唯一的零点0,x 且()02000ln 0xx x e x μ=+= 在区间()00,x 上,()()0,x m x μ<单调递减, 在区间()0,x ∞+上()(),0,x m x μ>单调递增 所以()0000min 00ln 1()x x e x x m x m x x --+==. 又因为()00,x μ=所以00001ln ,x x e x x =-即001ln 001ln x x x e e x =⋅. 令()()(0),0x x x p x xe x p x e xe '=>=+> 所以()p x 在区间()0,∞+上单调递增, 所以001ln ,x x =即001,x e x =所以()0000112x x m x x +-+==, 所以2k ,即(],2.k ∞∈-。