3练习与答案 命题逻辑
- 格式:ppt
- 大小:764.50 KB
- 文档页数:72
逻辑学(第3版)课后练习题答案(部分)人大出版社-图文逻辑学课后练习题答案(部分)王震14年11月8日整理第一章练习题答案二、在下列命题或推理中,哪些具有共同的逻辑形式,用公式表示出来。
1和5:所有S是P2和7:所有P是M,所有S不是M,所以,所有S不是P。
3和8:只有p,才q。
6和9:如果p,那么q;p;所以,q。
三、选择题1.C2.C3.ABCD4.BE第二章练习题答案一、判定下列断定的正误。
1.错误2.错误3.正确4.错误5.错误6.正确7.错误8.错误二、运用本章的相关知识以及相关常识,回答下列问题。
1.错误。
定义过宽。
2.错误。
定义过宽。
3.错误。
“勇敢”和“勇敢的战士”之间不存在属种关系。
4.错误。
“喜马拉雅山”和“珠穆朗玛峰”之间不存在属种关系。
三、在以下各句的括号中填入哪个或哪些选项是适当的?1.C2.ABC3.A4.A5.B6.BC7.B8.B9.BC10.AC四、下列各题中括号内的话,是从内涵方面还是从外延方面来说明标有横线的概念的?1.分别从内涵和外延2.从内涵3.分别从内涵和外延4.分别从内涵和外延5.分别从内涵和外延6.分别从内涵和外延五、从两种概念分类的角度(单独概念与普遍概念、正概念和负概念)说明下列各题中标有横线的概念属于哪一种类。
1.“美术作品”是普遍概念、正概念。
2.“《孔乙己》”是单独概念、正概念;“作品”是普遍概念、正概念。
3.“非司机”是普遍概念、负概念。
4.“中国女子排球队”是单独概念、正概念;“世界冠军”是普遍概念、正概念。
5.“中国工人阶级”是单独概念、正概念。
6.“国家检察机关”是单独概念、正概念。
六、试分析下列各题中标有横线的语词是在集合意义下使用的,还是在非集合意义下使用的?1.集合2.非集合3.非集合4.集合5.1)集合2)非集合3)非集合6.集合7.集合七、下列各组概念是什么关系?1.真包含2.全异(反对)3.交叉4.真包含于5.全异6.全异(矛盾)7.全同8.全异(反对)八、用欧拉图表示下列各题中标有横线的概念之间的关系:十、对下列概念各作一次限制与概括。
命题逻辑参考答案及提示1.(1)是命题,真值为1(2)不是命题(3)是命题,真值视具体情况而定(4)不是命题(5)是命题,真值为1(6)是命题,真值为1(7)是命题,真值为0(8)不是命题(9)是命题,真值视具体情况而定(10)不是命题2.(1)不是命题(2)不是命题(3)不是命题(4)是命题。
令P:所有的人都是要死的;Q:所有的人都怕死,则命题可符号化为:可表示为P A-,Q(5)是命题。
令P:我明天去苏州;Q:我后天去苏州,则命题可符号化为:PvQ(6)是命题。
令P:我明天去苏州;Q:我后天去苏州,则命题可符号化为:-i(PvQ)(7)是命题。
令P:我明天去北京;Q:我明天去天津;R:我后天去北京;S:我后天去天津,则命题可符号化为:PvQvRvS(8)是命题。
令P:我买到飞机票;Q:我出去,则命题可符号化为:―iP—>―iQ(9)是命题。
令P:他余款多;Q:他出门;R:他买书,则命题可符号化为:(P A Q-»R) A(-.P A Q^R)(10)是命题。
令P:你陪伴我;Q:你代我雇车;R:我去,则命题可符号化为:Rf (PvQ)(11)是命题。
令P:你充分考虑了一切论证;Q:你得到了可靠见解,则命题可符号化为:(P T Q)A(Q T P)或P—Q(12)是命题。
令P:我懂得希腊文;Q:我了解柏拉图,则命题可符号化为:(Q T P)T「Q(13)是命题。
令P:你去;Q:他去;R:我去,则命题可符号化为:(P->R)A(Q T R) A (-P —R) A(―Q—R)(14)是命题。
令P:上午下雨;Q:我去看电影;R:我在家里看书;S:我在家里看报, 则命题可符号化为:(~>P—>Q) A (P—> (RvS))(15)是命题。
令P:我今天进城;Q:下雨,则命题可符号化为:(16)是命题。
令P:你走;Q:我留下,则命题可符号化为:PeQ(17)是命题。
离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
“离散数学”数理逻辑部分考核试题答案━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━一、命题逻辑基本知识(5分)1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。
共2分)(0)小刘既不怕吃苦,又爱钻研.解:⌝p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研.(1)只有不怕敌人,才能战胜敌人.解:q→⌝p,其中,P:怕敌人;q:战胜敌人。
(2)只要别人有困难,老张就帮助别人,除非困难已经解决了。
解:⌝r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了.(3)小王与小张是亲戚。
解:p,其中,P:小王与小张是亲戚。
2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题.共1分)(0)A:(⌝(p↔q)→((p∧⌝q)∨(⌝p∧q)))∨ r(1)B:(p∧⌝(q→p)) ∧(r∧q)(2)C:(p↔⌝r)→(q↔r)(3)E:p→(p∨q∨r)(4)F:⌝(q→r) ∧r解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。
3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。
共2分)(0)设y=2|x|,x为实数。
推理如下:如y在x=0处可导,则y在x=0处连续。
发现y在x=0处连续,所以,y在x=0处可导。
解:设y=2|x|,x为实数.令P:y在x=0处可导,q:y在x=0处连续。
由此,p为假,q为真。
本题推理符号化为:(p→q)∧q→p。
由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。
(1)若2和3都是素数,则6是奇数。
2是素数,3也是素数.所以,5或6是奇数。
解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。
由此,p=1,q=1,r=1,s=0.本题推理符号化为:((p ∧ q) →s)∧p ∧q) →(r ∨ s)。
计算推理公式真值为真,由此,本题推理正确.二、命题逻辑等值演算(5分)1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。
命题逻辑的推理1.判断下面推理是否正确。
先将简单命题符号化,再写出前提、结论、推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一,则明天是星期三;今天是星期一。
所以明天是星期三。
(2)若今天是星期一,则明天是星期二;明天是星期二。
所以今天是星期一。
(3)若今天是星期一,则明天是星期三;明天不是星期三。
所以今天不是星期一。
(4)若今天是星期一,则明天是星期二;今天不是星期一。
所以明天不是星期二。
(5)若今天是星期一,则明天是星期二或星期三。
(6)今天是星期一当且仅当明天是星期三;今天不是星期一。
所以明天不是星期三。
2.构造下面推理的证明:(1)前提:p→(q→r), p, q结论:r∨s(2)前提:p→q, ┐(q∧r), r结论:┐p(3)前提:p→q结论:p→(p∧q)(4)前提:q→p, q s, s t, t∧r结论:p∧q(5)前提:p→r, q→s, p∧q结论:r∧s(6)前提:┐p∨r, ┐q∨s, p∧q结论:t→(r∨s)3.用附加前提法证明下面各推理:(1)前提:p→(q→r), s→p, q结论:s→r(2)前提:(p∨q)→(r∧s), (s∨t)→u结论:p→u4.用归谬法证明下面推理:(1)前提:p→┐q, ┐r∨q, r∧┐s结论:┐p(2)前提:p∨q, p→r, q→s结论:r∨s5.构造下面推理的证明。
(1)如果小王是理科学生,他必学好数学;如果小王不是文科生,他必是理科生;小王没学好数学。
所以,小王是文科生。
(2)明天是晴天,或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书。
所以,如果我看书,则明天是雨天。
答案1.设p:今天是星期一,q:明天是星期二,r:明天是星期三。
(1)推理的形式结构为(p→r)∧p→r此形式结构为重言式,即(p→r)∧p r所以推理正确。
(2)推理的形式结构为(p→q)∧q→p此形式结构不是重言式,故推理不正确。
1设A与B均为含n个命题变项的公式, 判断下列命题是否为真?.(1)A B 当且仅当 A B是可满足式.该命题为真该命题为假(2)A B 当且仅当 A与B有相同的主析取范式.该命题为真该命题为假(3)若A为重言式, 则A的主析取范式中含有2n个极小项.该命题为真该命题为假(4)若A为矛盾式, 则A的主析取范式为1.该命题为真该命题为假(5)若A为矛盾式, 则A的主合取范式为1.该命题为真该命题为假(6)任何公式A都能等值地化为联结词集{∧、∨} 中的公式.该命题为真该命题为假(7)任何公式A都能等值地化为联结词集{┐、→、∧}中的公式.该命题为真该命题为假用等值演算法来判断下列公式的类型.2.(1)(p→q)→(┐q→┐p)(2)┐(p→q)∧r∧q(3)(p→q)∧┐p3用主析取范式法判断题2中3个公式的类型, 并求公式的成真赋值. .题2中三个公式如下:(1)(p→q)→(┐q→┐p)(2)┐(p→q)∧r∧q(3)(p→q)∧┐p求题2中3个公式的主合取范式, 并求公式的成假赋值.4.题2中三个公式如下:(1)(p→q)→(┐q→┐p)(2)┐(p→q)∧r∧q (3)(p→q)∧┐p5 . 已知命题公式A中含3个命题变项p, q, r, 并知道它的成真赋值分别为001, 010, 111, 求A的主析取范式和主合取范式.6. 用等值演算法证明下面等值式.(1)(┐p∨q)∧(p→r)p→(q∧r)(2)(p∧q)∨┐(┐p∨q)p7.求公式(p→┐q)∧r在以下各联结词完备集中与之等值的一个公式:(1){┐,∧, ∨}(2){┐,∧}(3){┐,∨}(4){┐, →}(5){↑}8.用等值演算法求解下面问题.某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去, 则钱也去(2)李、周中至少去一人(3)钱、孙中去且仅去一人(4)孙、李两人都去或都不去(5)若周去, 则赵、钱也同去问该公司应选派哪些人出国?例题分析题1分析:(1)A B 当且仅当 A B为重言式, 而不是可满足式.(2)A B说明A与B有相同的成真赋值, 因而有相同的主析取范式;反之若A与B有相同的主析取范式,说明它们有相同的成真赋值,当然也有相同的成假赋值. 因而A B为重言式,故A B.(3)若A为重言式, 说明2n个赋值都是成真赋值, 因而主析取范式中含有2n个极小项.(4)若A为矛盾式, 则A无成真赋值, 因而A的主析取范式不含任何极小项, 规定A的主析取范式为0, 而不是1. 若是1, 则A1, 这与A为矛盾式不是矛盾了吗?(5)若A为矛盾式, 则A的2n个赋值都是成假赋值, 因而主合取范式应含有2n个极大项, 而不是1. 若为1,则A1, A不就成了重言式了吗?(6){∧、∨}不是联结词完备集. 因而, 有的公式不能等值地化为它中的公式. 例如:p q ┐p∨q ┐(p∧┐q) ... 但无论如何不能只含联结词∧和∨.(7){┐、→}是联结词完备集, 在它中再加一个联结词∧, 所得集合{┐、→、∧}也为完备集, 因而任何公式A都能等值地化为联结词集{┐、→、∧}中的公式.题2分析:(1)(p→q)→(┐q→┐p)┐(┐p∨q)∨(q∨┐p) (蕴涵等值式)(p∧┐q)∨(┐p∨q) (德·摩根律、交换律)((p∧┐q)∨┐p)∨q (结合律)((p∨┐p)∧(┐q∨┐p))∨q (分配律)(1∧(┐p∨┐q))∨q (排中律、交换律)┐p∨(┐q∨q) (同一律、结合律)┐p∨1 (排中律)1 (零律)由于该公式与1等值, 故它为重言式.(2)┐(p→q)∧r∧q┐(┐p∨q)∧q∧r (蕴含等值式、交换律)p∧(┐q∧q)∧r (德·摩根律、结合律)p∧0∧r (矛盾律)0 (零律)由于公式与0等值, 故它为矛盾式.(3)(p→q)∧┐p(┐p∨q)∧┐p (蕴含等值式)┐p (吸收律)由最后一步可知, 该公式既有成真赋值00和01, 又有成假赋值10和11, 故它为可满足式.注意:等项演算的过程不是唯一的, 但重言式一定与1等值, 矛盾式一定与0等值. 而可满足式化简到能观察出成真和成假赋值都存在即可.题3分析:求主析取范式可用真值表法, 也可以用等值演算法, 这里用等值演算法.(1)(p→q)→(┐q→┐p)┐(┐p∨q)∨(q∨┐p) (消去→)(p∧┐q)∨┐p∨q(┐内移) (已为析取范式)(p∧┐q)∨(┐p∧┐q)∨(┐p∧q)∨(┐p∧q)∨(p∧q)(*)m2∨m0∨m1∨m1∨m3m0∨m1∨m2∨m3 (幂等律、排序)(*)由┐p及q派生的极小项的过程如下:┐p┐p∧(┐q∨q)(┐p∧┐q)∨(┐p∧q)q(┐p∨p)∧q(┐p∧q)∨(p∧q)熟练之后, 以上过程可不写在演算过程中. 该公式中含n=2个命题变项, 它的主析取范式中含了22=4 个极小项, 故它为重言式, 00, 01, 10, 11全为成真赋值.(2)┐(p→q)∧r∧q┐(┐p∨q)∧r∧q (消去→)p∧┐q∧q∧r(┐内移)0 (矛盾律和零律)该公式的主析取范式为0, 故它为矛盾式, 00, 01, 10, 11全为成假赋值, 无成真赋值.(3)(p→q)∧┐p(┐p∨q)∧┐p (消去→)┐p∨(┐p∧q) (分配律、幂等律) 已为析取范式(┐p∧┐q)∨(┐p∧q)m0∨m1主析取范式中含2个极小项, 成真赋值为00和01.题4分析:求公式的主合取范式一般可有三种方法:(i)真值表法;(ii)等值演算法;(iii)用主析取范式求主合取范式.这里用方法(iii), 其余两种方法留给读者.(1)由题3可知, 主析取范式为:(p→q)→(┐q→┐p)m0∨m1∨m2∨m3因而该公式为重言式, 它的主合取范式为1, 无成假赋值.(2)由题3可知, 它为矛盾式, 即它的主析取范式为0, 因而无成真赋值, 于是主合取范式含8个极大项,即:┐(p→q)∧r∧q M0∧M1∧M2∧M3∧M4∧M5∧M6∧M7(3)该公式的主析取范式中含2个极小项m0和m1, 故主合取范式中含22-2=2个极大项M2和M3, 即(p→q)∧┐p M2∧M3成假赋值为10和11.题5分析:由于公式含3个命题变项, 并且已知有3个成真赋值001, 010, 111, 因而有5个成假赋值000, 011, 100, 101, 110.成真赋值对应的极小项分别为m1, m2, m7, 故主析取范式为A m1∨m2∨m7成假赋值对应的极大项分别为M0, M3, M4, M5, M6, 故主合取范式为A M0∧M3∧M4∧M5∧M6注意:公式的真值表与主析取范式(主合取范式)可以相互唯一确定.题6分析:用等值演算法证明A B, 可以有3种方式. 从A出发, 证到B;从B出发证到A;或证明A C和BC,由于等值关系有传递性和对称性, 故A B.题7分析:(1)(p→┐q)∧r(┐p∨┐q)∧r (已满足要求)(2)(p→┐q)∧r(┐p∨┐q)∧r┐(p∧q)∧r (已满足要求)(3)(p→┐q)∧r(┐p∨┐q)∧r┐┐((┐p∨┐q)∧r)┐(┐(┐p∨┐q)∨┐r) (已满足要求)(4)(p→┐q)∧r┐┐((p→┐q)∧r)┐(┐(p→┐q)∨┐r)┐( (p→┐q)→┐r) (已满足要求)(5)(p→┐q)∧r(┐p∨┐q)∧r┐(p∧q)∧r(p↑q)∧r┐┐((p↑q)∧r)┐((p↑q)↑r)((p↑q)↑r)↑((p↑q)↑r)注意:以上各式的推导和最后形式不唯一.题8分析:解此类问题的步骤应为:① 将简单命题符号化② 写出各复合命题③ 写出由各复合命题组成的合取式④ 将写出的公式化成析取范式, 给出其成真赋值, 即可得到答案.具体解法如下:① 令 p:派赵去q:派钱去r:派孙去s:派李去u:派周去② (1) p→q(2) s∨u(3) ((q∧┐r)∨(┐q∧r))(4) ((r∧s)∨(┐r∧┐s))(5) u→(p∧q)③ 设A=(p→q)∧(s∨u)∧((q∧┐r)∨(┐q∧r))∧((r∧s)∨(┐r∧┐s))∧(u→(p∧q))④ 求A的析取范式(用等值演算法), 简要过程如下:A(┐p∨q)∧(s∨u)∧((q∧┐r)∨( ┐q∧r))∧((r∧s)∨(┐r∧┐s))∧(┐u∨(p∧q))(┐p∨q)∧((q∧┐r)∨(┐q∧r))∧((r∧s)∨(┐r∧┐s))∧(s∨u)∧(┐u∨(p∧q))((┐p∧q∧┐r)∨(q∧┐r)∨(┐p∧┐q∧r))∧((r∧s)∨(┐r∧┐s))∧(s∨u)∧(┐u∨(p∧q))((q∧┐r)∨(┐p∧┐q∧r))∧((r∧s)∨(┐r∧┐s))∧(s∨u)∧(┐u∨(p∧q)) (用了吸收律)((┐p∧┐q∧r∧s)∨(q∧┐r∧┐s))∧(s∨u)∧(┐u∨(p∧q))((┐p∧┐q∧r∧s)∨(┐p∧┐q∧r∧s∧u)∨(q∧┐r∧┐s∧u))∧(┐u∨(p∧q))(┐p∧┐q∧r∧s∧┐u)∨(p∧q∧┐r∧┐s∧u)最后一步得到一个主析取范式, 含有两个极小项. 当p, q, r, s, u取值分别为0, 0, 1, 1, 0 或 1, 1, 0, 0, 1 时, A为真, 故公司应派孙、李去, 而赵、钱、周不去,或赵、钱、周去, 而孙、李不去.注意, 在演算中, 多次用了矛盾律和同一律.返回例题答案题1答案:(1)为假;(2)为真;(3)为真;(4)为假;(5)为假;(6)为假;(7)为真.题2答案:(1)为重言式;(2)为矛盾式;(3)为可满足式.题3答案:(1)为重言式, 00, 01, 10, 11为成真赋值.(2)为矛盾式, 无成真赋值. (3)为可满足式, 成真赋值为00和01.题4答案:(1)该公式的主合取范式为1, 无成假赋值.(2)它的主合取范式为:M0∧M1∧M2∧M3∧M4∧M5∧M6∧M7, 8个赋值全是成假赋值.(3)该公式的主析取范式为M2和M3, 成假赋值为10和11.题5答案:A的主析取范式为 m1∨m2∨m7;A的主合取范式为 M0∧M3∧M4∧M5∧M6.题6答案:(1)从左出发证(┐p∨q)∧(p→r)(┐p∨q)∧(┐p∨r) (蕴涵等值式)┐p∨(q∧r) (分配律)p→(q∧r) (蕴涵等值式)也可以从右出发证(请读者自己证).(2)从右出发证pp∧1 (同一律)p∧(q∨┐q) (排中律)(p∧q)∨(p∧┐q) (分配律)(p∧q)∨┐┐(p∧┐q) (双重否定律)(p∧q)∨┐(┐p∨q) (德·摩根律)题7答案:答案不唯一, 参看分析.题8答案:应该派赵、钱、周或派孙, 李去.返回。
逻辑学教程第三版课后练习题答案练习题之一参考答案一、填空题:1、亚里士多德2、弗兰西斯·培根、基本规律4、愈窄;愈宽、没有任何重合;等于6、内涵;外延7、一门学问、单独9、矛盾关系10、属种关系二、是非题:1、×、√3、×、×、×、×三、单项选择题:1、A 、B3、C4、A5、D6、D 、A8、B9、A 10、D四、双项选择题:1、D、E2、A、E 、D、E、B、C5、A、D六、欧拉图题:练习题之二参考答案一、填空题:1、假;真假不定、关系者项;量项、真;真、等值5、全称;否定6、假;真、同一;真包含于8、真;假;肯定;否定、必要10、如果不通过外语考试,就不能录取;并非不通过外语考试,也能录取;或者通过外语考试,或者不录取 11、p∧q12、交叉;真包含13、他或是美院学生但不会画国画,或者他不是美院学生但会画国画 14、真15、SEP、SIP二、是非题1.×.√3.√.×.√三、单项选择题:1、A2、A、A4、B、B6、B7、B、A9、C 10、B11、D 12、B13、D 14、D15、C四、欧拉图题1、P S2、、M S五、真值表题: 1、A :P→qB :∧qA不蕴涵B。
2、A:p→B:某大学没有录取小李。
3、A:p ∧ qB:p ∨ qA、B两组判断不等值。
4、甲: p→q乙: p←q丙: p∨q让小赵和小李都去浙江大学进修,可同时满足甲、乙、丙三位领导的要求。
5、 A:B:C :练习题之三参考答案一、填空题1、中项在前提中、假4、P5、MAP;SAM二、是非题:1、×、×、×、×5、√6、×、√、×、×10、×三、单项选择题:1、B 、B3、E 、C 、A6、A 、A8、D 、C 10、C四、双向选择题:1、B、C、B、C 、C、E、A、D 、C、E6、C、E、C、E 、A、B、B、E 10.A、B五、多项选择:1、A、B、C、E 、D、F、A、E4、B、E5、A、B、C、D、E 、A、C、D、E、B、C、D、E8、A、B、C六、判断、推理题:1.“小松鼠和小花猫是文明公民”是一个联言判断;“文明公民”是一种性质,根据联言判断的规则可以推出“小松鼠是文明公民或小花猫也是文明公民”个结论。
高中逻辑练习题及讲解逻辑练习题一:推理判断题目:在一次聚会中,有四位朋友分别穿着不同的颜色的衣服:红、蓝、绿、黄。
已知以下信息:1. 穿红衣服的人不坐在穿蓝衣服的人旁边。
2. 穿黄衣服的人坐在穿绿衣服的人旁边。
3. 穿绿衣服的人坐在穿蓝衣服的人的对面。
请根据以上信息,推断出四位朋友的座位顺序。
解答:根据条件1,我们知道红和蓝不能相邻。
根据条件2,黄和绿必须相邻。
根据条件3,绿和蓝对面坐。
结合这些信息,我们可以得出以下可能的座位顺序:黄-绿-蓝-红或红-蓝-绿-黄。
但是,由于红和蓝不能相邻,所以只有黄-绿-蓝-红是可能的顺序。
逻辑练习题二:命题逻辑题目:考虑以下命题:P:今天是星期一。
Q:今天有数学课。
R:如果今天有数学课,那么今天是星期一。
请判断以下命题的真假:1. 如果今天是星期一,那么今天有数学课。
2. 如果今天有数学课,那么今天是星期一。
解答:对于命题1,我们不能确定其真假,因为P(今天是星期一)和Q(今天有数学课)之间没有必然的联系。
命题1是逆命题,我们只知道R(如果今天有数学课,那么今天是星期一),但R的逆命题并不一定为真。
对于命题2,根据已知的R命题,我们可以确定其为真。
因为R命题表明,如果今天有数学课,那么今天是星期一,这与命题2的逻辑是一致的。
逻辑练习题三:条件推理题目:小王、小李和小张参加了一个比赛,比赛的规则是:只有当参赛者回答正确了所有问题,才能获得第一名。
已知小王和小李都获得了第一名,小张没有获得第一名。
请问小张是因为回答错了问题还是因为其他原因没有获得第一名?解答:根据比赛规则,只有回答正确了所有问题才能获得第一名。
由于小王和小李都获得了第一名,这意味着他们回答了所有问题。
而小张没有获得第一名,根据规则,我们可以推断出小张一定是因为回答错了问题,而不是其他原因。
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题? ( C )A 、你的离散数学考试通过了吗?B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题? ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么?其有何关系? 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么?其有何关系? 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗?为什么?答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗?为什么? 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 00 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 111 0 1主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q → A 00 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q ∧ p r ∧ A 00 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s → P(2) s r → P (3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式)(7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P(7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→ T (3),(6) (合取式) (8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论)(4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论)(4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理)(6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式) (8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
1.某地发生一起刑事案件,经过公安人员的努力侦破,作案嫌疑人锁定在A、E、C三人中,并且摸清了以下情况:①只有0 1号案件成功告破,才能确认A、B、C三人都是作案人。
②目前,0 1号案件还是一起悬案。
③如果A不是作案人,那么A的供词是真的,但A说自己与B都不是作案人。
④如果B不是作案人,那么B的供词也是真的,但B说自己与C是好朋友。
⑤现已查明C根本不认识B。
根据上述线索,问:A、B、C三人中谁是作案人?解:令p: 0 1号案件成功告破;q、r、s分别表示A、E、C作案;t: E与C是好朋友。
据题意有:1.⑴n (qArAs)P2.{2}-1 p P3.⑴"1 qfqAn r)P4.{4}n Lt P5.{5}n t P6.{4.5}r T4.5否定后件7.{1.2}n (qArAs)T1.2肯定前件&{1.2}"1 qVn rVq s T7德摩根9.{1.2.3}q T3.6否定后件10.{123.4.5}qAr P6.9组合式答:AB作案,至于C尚待侦查。
2.综合分析题(要求写出推导过程):某班有学生61人,卞面有三句话:①该班有些学生会使用计算机。
②该班有些学生不会使用计算机。
③该班班长不会使用计算机。
已知上述三句话中,只有一句话是真的,试问:哪一句话是真话?该班有多少学生会使用计算机?解:①②分别为I命题和O命题,二者是下反对关系,必有一真,或许都真;但据题设只有一句真话,可知③为假,真实情况是班长会使用计算机。
既然这样第一句话“该班有些学生会使用计算机”就是真的,而第二句话就是假的。
O命题假,根据矛盾关系可知,A命题即“该班所有学生都会使用计算机”就真,所以,全班61个学生都会计算机。
3.下面有三句话:①如果甲是篮球队员,则乙就是足球队员。
②如呆乙是足球队员,则甲就是篮球队员。
③甲不是篮球队员。
已知上述三句话中只有一句话是真话,问:甲是不是篮球队员?乙是不是足球队员?哪一句话是真话?(要求写出推导过程)解:令p表示“甲是篮球队员”,q表示''乙是足球队员”,再令③即5 p”真,据题设有:①{1} 1(p~*q)②{2} 1(q~p)③{3} 1 p④{1} pAn q⑤{1}P pppT①等值关系T④合取分解T ③©合取组合 T 归谬③⑥ T ②等值关系 T ⑧合取分解 T ⑦©合取组合 归谬②®一三两句为假。