高中热力学定律
- 格式:ppt
- 大小:84.50 KB
- 文档页数:35
物理高中热学公式1. 热力学第一定律:ΔU = Q + W,其中ΔU为内能变化,Q为系统与外界交换的热量,W为系统所做的功。
2. 热力学第二定律:ΔS = Q/T,其中ΔS为系统熵的变化,Q为热量,T为温度。
3. 热容:C = Q/ΔT,其中C为热容,Q为系统吸收或释放的热量,ΔT为温度变化量。
4. 比热容:c = C/m,其中m为物体的质量。
5. 热传导定律:Q = kAΔT/x,其中Q为热量,k为热导率,A为面积,ΔT为温度差,x为导热距离。
6. 热辐射定律:P = σA(T^4 – T0^4),其中P为单位时间内辐射的能量,σ为斯蒂芬—玻尔兹曼常数,A为发射体参考面积,T为发射体温度,T0为参考温度。
7. 热力学循环效率:η = (W净 / Q热) × 100%,其中W净为系统净工作量,Q热为系统吸收的热量。
8. 热力学效率公式:η = (T1 – T2) / T1,其中T1为热源温度,T2为冷源温度。
9. 热平衡方程:m1c1ΔT1 = m2c2ΔT2,其中m为物体的质量,c为比热容,ΔT为温差。
10. 热力学势公式:G = H – TS,其中G为吉布斯自由能,H为焓,T为温度,S为熵。
11. 熵变公式:ΔS = Qrev / T,其中ΔS为系统的熵变,Qrev为可逆过程吸放热量,T为温度。
12. 等温过程:Q = W,即等温过程中外界对系统所做的功等于系统吸收的热量。
13. 等体过程:W = 0,即等体过程中系统不做功,热量全部转化为内能。
14. 等压过程:W = PΔV,即等压过程中外界对系统所做的功等于压力乘以体积的变化量。
15. 等焓过程:Q = ΔH,即等焓过程中外界与系统的热交换量等于系统焓的变化量。
高考物理:热力学三大定律总结!热力学第一定律是能量守恒定律。
热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。
第一定律热力学第一定律也就是能量守恒定律。
自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。
内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。
(如果一个系统与环境孤立,那么它的内能将不会发生变化。
)符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。
②系统对外界做功,A<0,即W为负值。
③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值理解从三方面理解1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q3.在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。
在这种情况下,系统内能的增量△U就等于从外界吸收的热量Q和外界对系统做功A之和。
热力学四大定律:第零定律——若A与B热平衡,B与C热平衡时,A与C也同时热平衡第一定律——能量守恒定律(包含了热能)第二定律——机械能可全部转换成热能,但是热能却不能以有限次的试验操作全部转换成功(热能不能完全转化为功)第三定律——绝对零度不可达成性热力学定律的发现及理论化学反应不是一个孤立的变化过程,温度、压力、质量及催化剂都直接影响反应的方向和速度。
1901年,范霍夫因发现化学动力学定律和渗透压,提出了化学反应热力学动态平衡原理,获第一个化学奖。
1906年能斯特提出了热力学第三定律,认为通过任何有限个步骤都不可能达到绝对零度。
这个理论在生产实践中得到广泛应用,因此获1920年化学奖。
1931年翁萨格发表论文“不可逆过程的倒数关系”,阐明了关于不可逆反应过程中电压与热量之间的关系。
对热力学理论作出了突破性贡献。
这一重要发现放置了20年,后又重新被认识。
1968年获化学奖。
1950年代,普利戈金提出了著名的耗散结构理论。
1977年,他因此获化学奖。
这一理论是当代热力学理论发展上具有重要意义的大事。
它的影响涉及化学、物理、生物学等广泛领域,为我们理解生命过程等复杂现象提供了新的启示。
热力学第零定律如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
这一结论称做“热力学第零定律”。
热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。
定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。
它为建立温度概念提供了实验基础。
这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。
而温度相等是热平衡之必要的条件。
热力学中以热平衡概念为基础对温度作出定义的定律。
通常表述为:与第三个系统处于热平衡状态的两个系统之间,必定处于热平衡状态。
第三章热力学定律1.功、热和内能的改变................................................................................................ - 1 -2. 热力学第一定律....................................................................................................... - 10 -3. 能量守恒定律........................................................................................................... - 10 -4. 热力学第二定律....................................................................................................... - 18 -章末复习提高................................................................................................................ - 28 -1.功、热和内能的改变一、功和内能1.焦耳的实验(1)绝热过程:系统只由于外界对它做功而与外界交换能量,它不从外界吸热,也不向外界放热。
(2)代表性实验①重物下落带动叶片搅拌容器中的水,引起水温上升;②通过电流的热效应给水加热。
(3)实验结论:要使系统状态通过绝热过程发生变化,做功的数量只由过程始末两个状态决定,而与做功的方式无关。
2.功和内能(1)内能:任何一个热力学系统都必定存在一个只依赖于系统自身状态的物理量,这个物理量在两个状态间的差别与外界在绝热过程中对系统所做的功相联系。
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。
第八章热力学定律本章学习提要1.理解热力学第一定律,知道热力学第一定律反映了系统内能的变化和系统通过做功及传热过程与外界交换的能量之间的关系。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
2.知道热力学第二定律的表述。
知道熵是描写系统无序程度的物理量。
热力学的两个基本定律都是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的,这也是我们学习这两条基本定律应采取的方法。
人类的进步是与对蕴藏在物质内部能量的认识和利用密切相关的。
热力学定律为更好地设计和制造热机、更好地开发和利用能源指明了方向。
随着生产和科学实践的发展,人们逐步领悟到有效利用能源的意义,懂得遵循科学规律的重要性,从而更自觉地抵制违背科学规律的行为。
此外,以热力学定律为基础的现代热力学理论还广泛应用于物质结、凝聚态物理、低温物理、化学反应、生命现象、宇宙和恒星演化等领域,取得了巨大成就。
A 热力学第一定律一、学习要求理解热力学第一定律。
初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。
关注热力学第一定律的建立过程,明白热力学第一定律是包括内能的能的转化和能量守恒定律,是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的自然界中的最基本、最普遍的定律之一,通过对热力学第一定律的学习,体会该定律在科学史上的重要地位,感受该定律对技术进步和社会发展的巨大作用。
二、要点辨析1.热力学第一定律的含义和表式热力学第一定律是包括内能的能的转化和能量守恒定律。
物质的内能是一种与物质内的大量构成粒子无序热运动有关的能量形式,物质系统(如汽缸中一定质量的气体)内能的变化是它与外界交换能量的结果,而这种能量的交换则可通过做功和热传递两种方式实现,热力学第一定律反映了系统内能的变化(ΔU)与它和外界交换的功(W)和热量(Q)之间的定量的关系:ΔU=Q+W。
2.应用热力学第一定律解题时,要注意各物理量正、负号的含义当热力学第一定律表示为ΔU =Q +W 时,ΔU 为正值,表示系统内能增加;负值表示系统内能减小。
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =—p ΔV =-Δ(pV ),ΔU = Q —Δ(pV ) → ΔH = Q p 恒容+绝热(W '=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温:或或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等. C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3。
18思考题第2,3,4题书2。
18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)U ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
ΔU = n C V , m d T T 2T 1∫ ΔH = n C p, md T T 2 T1∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = nC p, m d T T 2T 1∫ΔU ≈ ΔH = nC p, m (T 2-T 1)ΔH = Q p = n Δ H m αβ其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m计算。
高中物理热力学三大定律
高中物理热力学三大定律是:
第一定律:能量守恒定律。
热量从不丢失,也不会流入外部世界中,因此热量在系统内的总和保持不变。
这意味着在一个封闭系统内,无论温度如何变化,能量守恒始终成立。
第二定律:热力学第二定律。
热量一定会从高温物体流向低温物体,直到两个物体的温度相等。
热力学第二定律揭示了热量的不可逆性,即热量不可能从低温物体流向高温物体,也不可能从高温物体流
向低温物体。
第三定律:热力学熵定律。
一个封闭系统的熵(即系统的混乱程度)随着温度的增加而增加。
熵是一个描述系统无序程度的物理量,它的值越大,系统越无序。
热力学熵定律是热力学第二定律的补充,它揭示了热量的不可逆性和系统的无序性。
这些定律是热力学的基础,对于理解化学反应和能源转换以及物理系统的行为非常重要。
热力学第一定律w正负
热力学第一定律是能量守恒原理的表述。
它指出,一个系统的内能变化等于从系统中传入的热量加上对系统做功的能量。
当一个系统从初始状态变为最终状态,其内能变化等于从系统中传入的热量减去对系统做功的能量。
这个式子可以用以下公式表示:
ΔU = Q - W
其中,ΔU表示系统内能变化,Q表示从系统中传入的热量,W
表示对系统做功的能量。
Q和W分别被定义为正值或负值,取决于它们的方向。
在讨论热力学第一定律的正负时,我们需要考虑热量和功的正负以及内能的变化方向。
当Q和W都为正数时,热量从外部进入系统,对系统做功的能量也为正数。
此时,系统的内能增加,即ΔU为正数。
相反,当Q和W都为负数时,热量从系统中流出,对系统做功的能量也为负数。
此时,系统的内能减少,即ΔU为负数。
当Q为正数,W为负数时,热量从外部进入系统,系统对外做负功。
这种情况下,系统的内能变化的正负取决于Q和W的大小关系。
如果Q的绝对值大于W的绝对值,那么ΔU为正数;如果W的绝对值大于Q的绝对值,那么ΔU为负数。
当Q为负数,W为正数时,热量从系统中流出,系统对外做正功。
这种情况下,系统的内能变化的正负也取决于Q和W的大小关系。
如果W的绝对值大于Q的绝对值,那么ΔU为正数;如果Q的绝对值大于W的绝对值,那么ΔU为负数。
总之,热力学第一定律w正负的问题需要考虑热量和功的正负以及内能的变化方向。
只有综合考虑这些因素,才能正确地判断系统内能变化的正负。
这个问题在热力学的许多应用中都是非常重要的,因此值得我们深入理解和掌握。
第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。
热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。
但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。
人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。
热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。
热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。
在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。
他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。
在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。
1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。
他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。
1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。
他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。
” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。
把热看成是一种状态量。
由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。
经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。
能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。
二、热学:
1、热力学第一定律: W + Q = ∆E
符号法则: 体积增大,气体对外做功,W 为“一”;体积减小,外界对气体做功,W 为“+”。
气体从外界吸热,Q 为“+”;气体对外界放热,Q 为“-”。
温度升高,内能增量∆E 是取“+”;温度降低,内能减少,∆E 取“一”。
三种特殊情况: (1) 等温变化 ∆E=0, 即 W+Q=0
(2) 绝热膨胀或压缩:Q=0即 W=∆E
(3)等容变化:W=0 ,Q=∆E
2 理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: PV T P V T PV T
111222==或恒量 (3) 含密度式:
P T P T 1112
22ρρ= *3、 克拉白龙方程: PV=n RT=M RT μ (R 为普适气体恒量,n 为摩尔数)
4 、 理想气体三个实验定律:
(1) 玻马—定律:m 一定,T 不变
P 1V 1 = P 2V 2 或 PV = 恒量
(2)查里定律: m 一定,V 不变 P T P T 1122= 或 P T =恒量 或 P t = P 0 (1+t 273) (3) 盖·吕萨克定律:m 一定,T 不变 V T V T V T V t 112===或恒量或V 0 (1+t 273
)
注意:计算时公式两边T必须统一为热力学单位,其它两边单位相同即可。
Welcome !!! 欢迎您的下载,资料仅供参考!。