第2讲基本概念热力学第一定律
- 格式:ppt
- 大小:999.50 KB
- 文档页数:22
第二章 热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。
2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的和的值。
3.了解为什么要定义焓,记住公式的适用条件。
4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,的计算。
5.掌握等压热与等容热之间的关系,掌握使用标准摩尔生成焓和标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握与之间的关系。
6.了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。
二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。
热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。
这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。
例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。
功和热的计算一定要与变化的过程联系在一起。
譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。
在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。
功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。
在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。
传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。
同样,在环境内部传递的能量,也是不能称为功(或热)的。
例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以。
热力学第一定律与第二定律热力学是研究能量与热的转化和传递规律的科学,它是自然科学中重要的分支之一。
在热力学中,第一定律和第二定律是两个基本的定律,它们定义了能量守恒和能量转化的方向,对于理解热力学系统的行为和实际应用具有重要意义。
1. 热力学第一定律热力学第一定律,也称为能量守恒定律,表明能量在系统与环境之间的传递和转化后总量保持不变。
它可以通过下式表达:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
根据热力学第一定律,一个封闭系统的能量是守恒的,能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。
热力学第一定律还可以用来推导出热机效率的表达式。
在一个热机中,根据热力学第一定律,系统吸收的热量等于系统对外界做的功加上系统内能的变化。
根据这个原理,我们可以得到热机效率的公式:η = 1 - Qc/Qh其中,η表示热机的效率,Qc表示热机向冷源放出的热量,Qh表示热机从热源吸收的热量。
这个公式表明,在一个热机中,不能把吸收的热量完全转化为功,一部分热量必须放出到冷源中,效率小于1。
2. 热力学第二定律热力学第二定律是热力学中最重要的定律之一,它表明热量不能自发地从低温物体传递到高温物体,而是自发地从高温物体传递到低温物体。
热力学第二定律有多种等效的表述方式,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述中,热量不会自发地从冷热源传递到热热源,即不存在一个热机,它只从一个热源吸热,然后完全转化为功,再把一部分热量放到冷热源上,不对环境产生任何影响。
这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统对外界做的功等于输入的热量。
这个等效表述被称为克劳修斯表述。
开尔文表述中,不可能制造一个只从一个热源吸热,然后完全转化为功的热机,而不对环境产生任何影响。
这相当于说,在一个封闭系统中,不存在一个循环过程,使得系统吸收的热量完全转化为功,不放出热量到冷热源。
学习必备欢迎下载物理热力学第一定律知识点归纳总结第二讲热力学第一定律§2.1 改变内能的两种方式热力学第一定律2. 1. 1、作功和传热作功可以改变物体的内能。
如果外界对系统作功W。
作功前后系统的内能分别为、,则有没有作功而使系统内能改变的过程称为热传递或称传热。
它是物体之间存在温度差而发生的转移内能的过程。
在热传递中被转移的内能数量称为热量,用Q 表示。
传递的热量与内能变化的关系是做功和传热都能改变系统的内能,但两者存在实质的差别。
作功总是和一定宏观位移或定向运动相联系。
是分子有规则运动能量向分子无规则运动能量的转化和传递;传热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。
2. 1. 2、气体体积功的计算1、准静态过程一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化,状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于平衡态。
如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要发生变化。
在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。
在热力学中,为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程的概念。
如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。
因此,准静态过程就是实际过程非常缓慢进行时的极限情况对于一定质量的气体,其准静态过程可用图、图、图上的一条曲线来表示。
注意,只有准静态过程才能这样表示。
2、功在热力学中,一般不考虑整体的机械运动。
热力学系统状态的变化,总是通过做功或热传递或两者兼施并用而完成的。
在力学中,功定义为力与位移这两个矢量的标积。
在热力学中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功;电流的功。
(1)机械功有些热力学问题中,应考虑流体的重力做功。
热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。
本文将深入探讨热力学第一定律的概念、原理和应用。
热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。
它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。
这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。
当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。
热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。
这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。
当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。
热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。
下面将介绍热力学第一定律的几个重要应用。
1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。
热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。
通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。
2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。
平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。
通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。
3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。
热力学第一定律可以用于定常流动过程的计算。
这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。
通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。
第二章热力学第一定律Ⅰ学习指导一、基本思路热力学主要包括热力学第一定律和热力学第二定律。
本章热力学第一定律介绍封闭的热力学系统在状态变化时热力学能、热和功之间相互转化所遵循的规律。
首先介绍了热力学的基本概念,如系统和环境、状态函数、过程和途径、热力学平衡态、热和功等,得出了热力学第一定律的文字表述和数学表达式。
热力学能是热力学第一定律所引出的重要的状态函数,它是系统内部所具有的能量。
热和功是封闭系统在状态变化时与环境传递能量的两种方∆=+,将封闭系统变化过程式,都与过程有关,称为过程量。
通过热力学第一定律U Q W中热、功和热力学能改变联系了起来。
焓是由系统的热力学能、体积和压力组合得到的一个状态函数,在一定条件下,系统的焓变与过程的热相联系,焓及其有关公式可以看成是热力学第一定律的扩展。
通过Gay-Lussac-Joule实验,说明理想气体的热力学能和焓只是温度的函数;通过Joule-Thomson实验讨论了热力学第一定律对实际气体的应用。
热力学第一定律的具体应用就是围绕不同过程(理想气体简单状态变化、相变和化学变化)中热、功、热力学能变和焓变的计算展开。
准静态过程和可逆过程是热力学的重要概念;卡诺循环是热力学的特殊循环。
热化学是热力学第一定律对于化学反应系统的应用,据此可以计算反应的热效应,通常利用热化学数据(生成焓和燃烧焓)及Hess定律可直接求得298 K下反应的热效应,应用Kirchhoff定律可计算不同温度下反应的热效应。
本章还介绍了热力学第零定律,以热平衡现象为基础给出了温度的概念。
本章的主要内容及其逻辑关系如框图所示。
二、基本概念1.热力学第零定律如果两个系统分别和处于确定状态的第三个系统达到热平衡,则这两个系统彼此也将处于热平衡。
这个热平衡规律称为热力学第零定律。
此定律给出了温度的概念和比较温度的方法。
2.状态函数状态是系统的一切宏观性质(质量、温度、压力、密度和热力学能等)的综合表现。
1第二章热力学第一定律2.1 热力学概论2.2 热力学的一些基本概念2.3 热力学第一定律2.4 焓和热容2.5 理想气体的热力学能和焓2.6 几种热效应2.7 化学反应的焓变22.1 热力学概论1. 热力学的研究对象2. 热力学的研究方法和局限性化学热力学是用热力学基本原理研究化学过程或与化学有关的物理过程。
热力学是研究宏观系统的热与其他形式能量之间的相互转换关系及其转换过程中所遵循的规律。
32.1.1 热力学的研究对象1. 研究化学过程及其与化学密切相关的物理过程中的能量转换关系。
2. 判断某条件下指定的热力学过程如相变、化学变化等的变化方向以及可能达到的最大限度。
根据第一定律计算变化过程中的能量变化,根据第二定律判断变化的方向和限度。
42. 1.2 热力学的研究方法和局限性研究方法•研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。
•只考虑变化前后的净结果,不考虑物质的微观结构和反应机理。
•不研究系统的宏观性质与微观结构之间的关系局限性•不知道反应的机理、速率和微观性质•只讲可能性,不讲现实性•能判断变化能否发生以及进行到什么程度,但不考虑变化所需要的时间。
52.2 热力学的一些基本概念1. 系统和环境2. 系统的宏观性质3. 热力学平衡态4. 状态函数5. 过程和途径62.2.1 系统和环境系统(system )在科学研究中,把被划定的研究对象称为系统,亦称为物系或体系。
环境(surroundings)与系统密切相关、有相互作用或影响所能及的部分称为环境。
系统环境系统与环境72.2.1 系统和环境根据系统与环境之间的关系,把系统分为三类:(1)敞开系统(open system )系统与环境之间既有物质交换,又有能量交换。
环境有物质交换有能量交换敞开系统经典热力学不研究敞开系统82.2.1 系统和环境(2)封闭系统(closed system )系统与环境之间无物质交换,但有能量交换。
热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。
它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。
该定律在许多领域都有广泛的应用,包括工程、物理、化学等。
1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。
数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。
1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。
能量的总量在一个封闭系统中保持不变。
2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。
系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。
2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。
当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。
系统吸收的热量可以引起系统内能的增加。
2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。
当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。
系统所做的功可以引起系统内能的减少。
3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。
例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。
3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。
例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。
3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。
通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。
热力学第一定律是能量守恒在热学中的体现,是解决所有涉及动力学过程的热力学题目的基础。
“活塞”是连接两个互相分离的腔体的一种装置。
由于活塞通常可以自由移动,因此问题会变得十分复杂。
然而,活塞题通常的特点是烦而不难,希望同学们能够耐心求解。
本讲将向您介绍热力学第一定律以及一些活塞过程。
学完之后能给你的同学讲明白这几个问题,就算成功了: 1) 为什么内能之和状态有关,做功和吸热与过程有关,为什么比热是与过程有关的,而不只是材料的属性。
2) 当活塞两边压强不一样的时候,算体积功,应当怎样选择用哪一边计算。
热力学第一定律:这是能量守恒在热力学过程中的体现。
当系统与外界间的相互作用既有做功又有热传递两种方式时,设系统内能增加量为E ∆。
在这一过程中系统从外界吸收的热量为Q ,外界对系统做功为W ,则E Q W ∆=+。
式中各量是代数量,有正负之分。
系统吸热Q >0,系统放热Q <0;外界做功W >0,系统做功W <0;内能增加。
△E >0,内能减少△E <0。
热力学第一定律是普遍的能量转化和守恒定律在热现象中的具体表现。
活塞过程泛指容器中有活塞的气体过程。
通常气体过程是要求准静态的,因此活塞在任意时刻都受力平衡。
这是沟通两个腔体中的气体的一个条件。
运用理想气体状态方程和热力学第一定律即可解决大部分活塞问题。
还有一类特殊的活塞问题,是求解在平衡状态下,活塞偏离平衡位置的小振动。
通常,如果没有特殊说明,那么我们取气体的绝热模型。
我们把满足PV n=常量的过程称为多方过程,其中n 为多方系数。
n=1时,即为等温过程,n=γ时为绝热过程,n=0为等压过程,n=∞为等体过程。
高二物理竞赛 第2讲热力学第一定律与活塞运动本讲导学 知识点睛通常,我们可以运用热学和力学来计算我们的大气层高度。
一个模型是等温模型,它假设各个高度的大气是等温的,进而求解。
另一个模型是绝热模型,它假设气体的热交换是不充分的,不同高度的大气满足绝热关系:PVγ=C。