第一章热力学的基本规律课后作业及答案
- 格式:doc
- 大小:578.50 KB
- 文档页数:10
若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
第一章 热力学第一定律一、选择题1.下述说法中,哪一种正确( )(A)热容C 不是状态函数; (B)热容C 与途径无关;(C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。
2.对于内能是体系状态的单值函数概念,错误理解是( )(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值;(C) 状态发生变化,内能也一定跟着变化;(D) 对应于一个内能值,可以有多个状态。
3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( )(A) O 2 (B) Ar (C) CO 2 (D) NH 34.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( )(A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -15.已知反应)()(21)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ∆,下列说法中不正确的是( )。
(A).)(T H m r θ∆是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ∆是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ∆是负值 (D). )(T H m r θ∆与反应的θm r U ∆数值相等 6.在指定的条件下与物质数量无关的一组物理量是( )(A) T , P, n (B) U m , C p, C V(C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B)7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( )(A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0(C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠08.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( )(A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热(C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等9.为判断某气体能否液化,需考察在该条件下的( )(A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值10.某气体的状态方程为PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为( )(A) ΔU>0 (B) ΔU <0 (C) ΔU =0 (D) 该过程本身不能实现11.均相纯物质在相同温度下C V > C P的情况是()(A) (∂P/∂T)V<0 (B) (∂V/∂T)P<0(C) (∂P/∂V)T<0 (D) 不可能出现C V>C P12.理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是()(A) T可逆> T不可逆, V可逆> V不可逆, ΔH可逆>ΔH不可逆(B) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆<ΔH不可逆(C) T可逆< T不可逆, V可逆> V不可逆, ΔH可逆<ΔH不可逆(D) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆>ΔH不可逆13.1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。
解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。
问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。
解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。
1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。
线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
§1第一章热力学第一定律作业题目与习题答案2. 已知373.15K,101.325kPa下1kgH2O(l)的体积为1.043dm3,1kg水蒸气的体积为1677dm3,水蒸发为水蒸气过程的蒸发热为2257.8 kJ·kg–1。
此时若1mol 液体水完全蒸发为水蒸气,试求(1)蒸发过程中体系对环境所做的功;(2)假定液体水的体积忽略不计,蒸气可视为理想气体,求蒸发过程中的功及所得结果的相对误差;(3)求(1)中变化的∆vap U m,∆vap H m。
解:(1) W=p∆vap V=101325⨯(1677-1.043)⨯10-3⨯0.018J=3057J;(2) W=p∆vap V≅pV g=nRT=1⨯8.314⨯373.15J=3102J,相对误差=(3102-3057)/3057=1.47%;(3) ∆vap H m=Q p=2257.8⨯0.018 kJ·mol-1=40.64kJ·mol-1,∆vap U m=∆vap H m- p∆vap V m =(40.64-3.057) kJ·mol-1=37.58kJ·mol-1。
3、1kg空气由25︒C经绝热膨胀降温至–55︒C。
设空气为理想气体,平均摩尔质量为0.029kg·mol–1,C V,m = 20.92 J·K–1·mol–1,求Q、W、∆U、∆H。
解:∆U=(W/M)C V,m∆T=[20.92⨯(-55-25)/0.029]J= -57.7kJ,∆H=(W/M)C p,m∆T=[(20.92+8.314)⨯(-55-25)/0.029]J = -80.6kJ,Q=0 ,W= -∆U=57.7kJ。
6、某理想气体热容比γ=1.31,经绝热可逆膨胀由1.01×105 Pa,3.0dm3,373 K 的初态降压到1.01×104 Pa,求(1)终态气体的体积与温度;(2)膨胀过程的体积功;(3)膨胀过程的∆U与∆H。
解:已知理想气体的物态方程为 体胀系数1 VV T p压强系数1 PP T V等温压缩系数T1V pV nRTnR 1 pV T ,nR 1pV TV1 ’ n RT 、 1( 2 )p TV p p由此得到d PP T dTVp dT—dTTP 2 P 1___ T 2dTT 1—T 2 T_1TT11lnV(―dT d p)T P⑷积分pV CT1.3测得一块铜块的体胀系数和等 温压缩系数分别为4.85 10 5K 1和T 7.8*10 7P n 1,和T 可近似Q W 7.47 103 J1.5在25 C 下,压强在0至lOOOP n 之间,测得水的体积为3 6 2 3V (18.066 0.715 10 p 0.046 10 p )cm mol如果保持温度不变,将 1mol 的水从1 p n 加压至1000 p n ,求外界所做的功。
保持温度不变,将1mol 的水由1p n 加压至1000p n ,外界所做的功为在上述计算中我们已将过程近似看作准静态过程。
定容比热容可由所给定压比热容算出维持体积不变,将空气由 0 C 加热至20 C 所需热量Q v 为Q 口6仃2 T 1) 34.83 0.706 103 20J 4.920 105 J(b) 维持压强不变,将空气由 0 C 加热至20 C 所需热量Q p 为Q p m 1 c p (T 2 T 1) 34.83 0.996 1 03 20J 6.938 105 J(c) 若容器有裂缝,在加热过程中气体将从裂缝漏出,使容器内空气质量发生变化•根据理想气体的物 态方程解将题中给出的体积与压强关系记为 由此易得V a bp cp 2dV (b2cp)d p(1)V B V A P *V B V Ap(b2cp)d p1000 1,2 2 3-bp -cp 2 3“33.1J mol1.6在0 C 和15下,空气的密度为 今有27m 3的空气,试计算:(a) 若维持体积不变,将空气由 (b) 若维持压强不变,将空气由 (c) 若容器有裂缝,外界压强为 解(a)由题给空气密度可以算得1.29kg m 3。
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。
解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。
问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。
解 将气体的膨胀过程近似看作准静态过程。
根据式(1.4.2),在准静态等温过程中气体体积由A V 膨胀到B V ,外界对气体所做的功为d d ln ln B BAAV V B A V V A BV p VW p V RT RT RT V V p =-=-=-=-⎰⎰气体所做的功是上式的负值,将题给数据代入,得3ln8.31300ln 207.4710J ABp W RT J p -==⨯⨯=⨯ 在等温过程中理想气体的内能不变,即0U ∆=根据热力学第一定律(式(1.5.3)),气体在过程中吸收的热量Q 为37.4710J Q W =-=⨯1.5在25C ︒下,压强在0至n 1000p 之间,测得水的体积为36231(18.0660.715100.04610)cm mol V p p --=-⨯+⨯⋅如果保持温度不变,将1mol 的水从n 1p 加压至n 1000p ,求外界所做的功。
解 将题中给出的体积与压强关系记为2V a bp cp =++ (1)由此易得d (2)d V b cp p =+ (2)保持温度不变,将1mol 的水由n 1p 加压至n 1000p ,外界所做的功为100023112d (2)d 33.1J mol 23B BAAV V V V W p V p b cp p bp cp ⎛⎫=-=-+=-+=⋅ ⎪⎝⎭⎰⎰在上述计算中我们已将过程近似看作准静态过程。
1.6在0C ︒和n 1p 下,空气的密度为31.29kg m -⋅。
空气的定压比热容3110.99610J k g k p c --=⨯⋅⋅, 1.41γ=。
今有327m 的空气,试计算:(a)若维持体积不变,将空气由0C ︒加热至20C ︒所需的热量。
(b)若维持压强不变,将空气由0C ︒加热至20C ︒所需的热量。
(c)若容器有裂缝,外界压强为n 1p ,使空气由0C ︒缓慢地加热至20C ︒所需的热量。
解 (a)由题给空气密度可以算得327m 空气的质量1m 为1 1.2927kg 34.83kg m =⨯=定容比热容可由所给定压比热容算出3-113-110.99610J kg k 0.70610J kg k 1.41pV c c γ--⨯==⋅=⨯⋅维持体积不变,将空气由0C ︒加热至20C ︒所需热量V Q 为35121()34.830.7061020J 4.92010J V V Q m c T T =-=⨯⨯⨯=⨯(b)维持压强不变,将空气由0C ︒加热至20C ︒所需热量p Q 为35121()34.830.9961020J 6.93810J p p Q m c T T =-=⨯⨯⨯=⨯(c)若容器有裂缝,在加热过程中气体将从裂缝漏出,使容器内空气质量发生变化.根据理想气体的物态方程mpV RT m +=m +为空气的平均摩尔质量,在压强和体积不变的情形下,容器内气体的质量与温度成反比。
以1m 、1T 表示气体在初态的质量和温度,m 表示温度为T 时气体的质量,有1111m m pV RT RT mT m T m m ++==⇒= 所以在过程(c)中所需的热量Q 为2211211111d ()d ln T T p p p T T T TQ c m T T m T c m T c T T ===⎰⎰将所给数据代入,得3529334.832730.99610lnJ 6.67810J 273Q =⨯⨯⨯=⨯ 1.7抽成真空的小匣带有活门,打开活门让气体冲入。
当压强达到外界压强0p 时将活门关上。
试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来在大气中的内能0U 之差为000U U p V -=,其中0V 是它原来在大气中的体积。
若气体是理想气体,求它的温度和体积。
解 将冲入小匣的气体看作系统。
系统冲入小匣后的内能U 与其原来在大气中的内能0U 由式(1.5.3)0U U W Q -=+ (1)确定。
由于过程进行得很迅速,过程中系统与外界没有热量交换,0Q =。
过程中外界对系统所做的功可以分为1W 和2W 两部分来考虑。
一方面,大气将系统压入小匣,使其在大气中的体积由0V 变为零。
由于小匣很小,在将气体压入小匣的过程中大气压强0p 可以认为没有变化,即过程是等压的(但不是准静态的)。
过程中大气对系统所做的功为1000W p V p V =-∆=另一方面,小匣既抽为真空,系统在冲入小匣的过程中不受外界阻力,与外界也就没有功变换,则20W =因此式(1)可表为000U U p V -= (2)如果气体是理想气体,根据式(1.3.11)和(1.7.10),有000p V nRT = (3)001nRT U γ=- ,1nRTU γ=- (4) 式中n 是系统所含物质的量。
代入式(2)即有0T T γ= (5)活门是在系统的压强达到0p 时关上的,所以气体在小匣内的压强也可看作0p ,其物态方程为00p V nR T γ= (6)与式(3)比较,知0V V γ= (7)1.8满足PV n =C 的过程称为多方过程,其中常数n 名为多方指数。
试证明,理想气体在多方过程中的热容量为--1nV n C C n γ=解法一: 0d d d lim d d n V T n n nU P V U P V V C C P T T T ∆→∆+∆+⎛⎫⎛⎫⎛⎫===+ ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭ 理想气体多方过程 P V = RTP V n = C有 1d d d d d 0,d d 0n nP V V P R T PV n V V P nP V V P -+=⎧⎨⋅+=+=⎩d d 1R P V T n ⇒=-- 所以 1--=n RC C V n 另一方面,理想气体 ⎪⎩⎪⎨⎧==-γVp V p C C R C C所以得--1n V n C C n γ=, 证毕 解法二:根据热力学第一定律,有d d d (d )n V V C T C T p VU C T =+=d利用理想气体的物态方程,可将n pV C =可化为11n TV C -= (1)将上式微分,得d d d (1)(1)V T R TV n T n p=-=--- (2)将(2)代入(1)式,得1n V RC C n =--,由于(1)p V V R C C C γ=-=-, 即得1.10 假设理想气体的C p 和C V 之比γ是温度的函数,试求在准静态绝热过程中T 和V 的关系。
该关系试中要用到一个函数F (T ),其表达式为:()()d ln 1TF T Tγ=-⎰解:准静态绝热过程中:d 0Q =∴d d U p V =- (1)对于理想气体,由焦耳定律知内能的全微分为 d d V U C T = (2) 物态方程nRTpV nRT p V=⇒=(3) (2),(3)代入(1)得:d d V nRTC T V V-= (其中1-=γnR C V ) ()d 11d d d 1V nRC V T T T V nRT nRT Tγγ--===⇒-()d 1d 1V T V γ-=-⎰⎰关系式()11ln d 1V T γ-=-⎰γ为T 的函数 ∴1V -为T 的函数。
∴VT F 1)(=1)(=V T F 1.11利用上题的结果证明,当γ是温度的函数时,理想气体卡诺循环的效率仍为211T T η=-。
解 在γ是温度的函数的情形下,§1.9就理想气体卡诺循环得到的式(1.6.18)——(1.6.21)仍然成立,即仍有2111lnV Q RT V = (1),3224ln V Q RT V = (2) 32121214lnln V V W Q Q RT RT V V =-=- (3) 对于状态1、4和2、3有下面的关系:1124()()F T V F T V = (4)111n V V Vn C C C C n n γγ--=-=--1223()()F T V F T V = (5)从这两个方程消去1()F T 和2()F T ,得3214V V V V = (6) 故2121()lnV W R T T V =- (7) 所以在γ是温度的函数的情形下,理想气体卡诺循环的效率仍为2111T WQ T η==- (8) 1.13热机在循环中与多个热源交换热量,在热机从其中吸取热量的热源中,热源的最高温度为1T ,在热机向其放出热量的热源中,热源的最低温度为2T 。