积和商的变化规律练习题
- 格式:doc
- 大小:26.00 KB
- 文档页数:1
和、差、积、商的变化规律(一)知识点拨和、差的规律见下表(m≠0)精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。
【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2. 和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。
现在要使和增加6,那么另一个加数应减少10-6=4。
【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。
两个数的差先增加8,接着又减少8,所以不起什么变化。
【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。
积先扩大8倍又缩小2倍,因此,积扩大了8÷2=4倍。
【练习4】1.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?【例题5】两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?【思路】如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。
积的变化规律练习题一、根据已知算式,直接写出下面各题的得数.18×24=432 105×45=4725(18÷2)×(24×2)= (105÷5)×(45×5)=(18×2)×(24÷2)= (105×3)×(45÷3)= 24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744(24○3)×(75○□)=1800 (36○□)×(104○□)=374415×24=36015×72=( )30×24=() 5×24=( ) 15×12=( )15×(24×)=3600 15×(24÷10)=()12×20=240(12×6)×(20×5)=( ) (12÷3)×(20÷4)=()(12×)×(20×)=4800 (12÷)×(20÷)=40二、选择。
1.一个因数扩大5倍,另一个因数不变,积()。
A、缩小5倍B、不变C、扩大5倍2.一个因数扩大5倍,另一个因数缩小5倍,积()。
A、缩小5倍 B、不变 C、扩大5倍3.两数相乘,一个因数扩大2倍,另一个因数扩大3倍,那么积()。
A、不变B、扩大5倍C、扩大6倍4.两个因数的积是60,这时一个因数缩小4倍,另一个因数不变,现在的积是( )A、240B、60C、155.一个长方形的面积为12平方米、把长扩大到原来的3倍,宽不变,扩大后的面积是( )6.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()7.一个正方形的面积为12平方米、把边长扩大到原来的3倍,,扩大后的面积是( )8.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()9.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()10.一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是( )11.一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()12.一个因数扩大到原来的3倍,另一个因数缩小到原来的3倍,积是90,原来两个因数的积是()。
积、商的变化规律同学们好,在上一讲我们研究了和、差的变化规律,今天这一讲我们来研究,积、商的变化规律。
请同学们填出下表,说出什么发生了变化,积、商有没有发生变化,如果有变化是怎样变的,你能从中得出什么结论吗?规律:两个因数相乘,被乘数乘以(或除以)一个不为0的数,乘数不变,积也乘以(或除以)同一个数。
两个因数相乘,被乘数不变,乘数乘以(或除以)一个不为0的数,积也乘以(或除以)同一个数。
两个因数相乘,被乘数乘以(或除以)一个不为0的数,乘数同时除以(或乘以)同一个数,积不变。
规律:在除法里被除数乘以(或除以)一个不为0的数,除数不变,商也乘以(或除以)同一个数。
被除数不变,除数乘以(或除以)一个不为0的数,商反而除以(或乘以)同一个数。
被除数乘以(或除以)一个不为0的数,除数同时乘以(或除以)相同的一个数,商不变。
例1. 2584⨯=⨯⨯÷=⨯=()()254844100212100分析与解答:根据积的变化规律,一个因数扩大多少倍,另一个因数反而缩小相同的倍数,积不变的规律,使25×4,使84÷4,转化为100×21,这就很快计算出结果是2100。
例2. 12588⨯=⨯⨯÷=⨯=()()125888810001111000例3. 2250125÷=⨯÷⨯=÷=()()22508125818000100018分析与解答:根据商的变化规律,被除数和除数同时乘以或除以一个数(不为0)商不变的规律,可以使2250×8,使125×8,转化为18000÷1000,这样就能很快算出结果是18。
【模拟试题】(答题时间:45分钟)(一)尝试体验 1. 填一填1272244⨯⨯⨯⨯⨯⎫⎬⎪⎪⎪⎭⎪⎪⎪=÷÷÷÷÷⎫⎬⎪⎪⎪⎭⎪⎪⎪=()()()()()()()()()()()()()()()()()() 完成上面两组题后,每组后面的4个题与第一算式比较各部分是怎样变化的,才保证了使它们的和、差、积、商没发生变化? 2. 利用积、商变化规律,计算下面各题。
四年级数学上册积和商的变化规律练习题Prepared on 21 November 2021第16周周练积的变化规律一、填空题。
1.写得数并发现规律。
16×17=32×17=16×34=48×17=16×51=64×17=我发现了:一个因数相同,另一个因数(),积也()。
请在上面的横线上举一个例子验证你的发现。
20×18=20×18=10×18=20×9=5×18=20×3=我发现了:一个因数相同,另一个因数(),积也()。
请在上面的横线上举一个例子验证你的发现。
2.根据以上的发现填空。
(1)42×56=235242×112=()21×56=()42×28=()7×56=()(2)5×14=705×28=()5×42=()5×56=()5×70=()3.一个因数不变,另一个因数乘几或除以几(0除外),积也()。
4.两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。
5.两个因数相乘,一个因数乘6,另一个因数不变,那么积()。
6.两个因数相乘的积是5600,如果一个因数不变,另外一个因数除以10,那么积是()。
7.两个数相乘是75,如果一个因数乘7,另一个因数除以7,积是()。
8.已知A×B=400,如果A乘3,则积是(),如果B除以5,则积是()。
9.两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积()。
10.两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积()。
11.两个数相乘,一个因数乘10,另一个因数也乘10,积()。
12.两个因数的积是420,如果一个因数不变,另一个因数乘8,积是()。
13.两个数相乘的积是160,如果一个因数除以2,另一个因数也除以2,积是()。
积和商“变与不变”规律㈠、积的变化规律:⑴、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。
字母表示:如果a×b=c ,则(a×3)×b=c×3举例:a×b=12 如果(a×3)则积就是12×3=36.⑵、一个数乘一个比1大的数,积比原数大;⑶、一个数乘一个比1小的数,积比原数小。
㈡、积不变规律:一个因数乘(或除以)几,另一个因数相应的除以(或乘)几,积不变。
字母表示:如果a×b=c 则(a×5)×(b÷5)=c㈢、商的变化规律:⑴被除数不变,除数乘或除以几,商就相应的除以或乘几。
字母表示:如果a÷b=c ,则a÷(b×3)=c÷3本文档下载后根据实际情况可编辑修改使用举例:a÷b=12 如果(b×3)则商就是12÷3=4⑵除数不变,被除数乘或除以几,商就相应的乘或除以几。
字母表示:如果a÷b=c ,则(a×3)÷b=c×3举例:a÷b=12 如果(a×3)则商就是12×3=36.被除数大于除数,商就大于1;被除数小于除数,商就小于1.一个数除以一个比1大的数,商比被除数要小;一个数除以一个比1小的数,商比被除数要大。
㈣、商不变规律:被除数和除数同时乘或除以几,商不变。
1、根据78×12=936,填写下面各题的结果。
7.8×12=() 0.78×12=() 7.8×0.12=() 0.78×()=936本文档下载后根据实际情况可编辑修改使用2、根据414÷18=23,填写下面各题的结果。
4.14÷1.8=() 4140÷1.8=() 0.414÷0.18=() 41.4÷18=()3、根据45×63=2835,填写下面各题的结果。
积和商的变化规律1、发现规律直接写得数。
16×17=272 32×17= 32×34=16×34= 48×17= 8×34=16×51= 64×17= 4×68=2、发现规律直接写得数。
2000÷25=80(2000×2)÷(25×2)= (2000×15)÷(25×15)=(2000÷5)÷(25÷5)= (2000÷18)÷(25÷18)=(2000÷5)÷25= (2000×20)÷25=2000÷(25÷5)= 2000÷(25×5)=(2000÷5)÷(25×2)= (2000×5)÷(25÷2)=(2000÷2)÷(25÷4)= (2000×2)÷(25×8)=3、两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。
4、两个因数相乘,一个因数乘6,另一个因数不变,那么积()。
5、两个因数相乘的积是5600,如果一个因数不变,另外一个因数除以10,那么积是()。
6、两个数相乘是75,如果一个因数乘7,另一个因数除以7,积是()。
7、已知A×B=400,如果A乘3,则积是(),如果B除以5,则积是()。
8、两个数相乘,一个因数乘10,另一个因数也乘10,积()。
9、两个因数的积是420,如果一个因数不变,另一个因数乘8,积是()。
10、两个数相乘的积是160,如果一个因数除以2,另一个因数也除以2,积是()。
11、两数相除的商是15,如果被除数、除数同时扩大10倍,商是()。
第16周周练积的变化规律一、填空题。
1.写得数并发现规律。
16×17= 32×17=16×34= 48×17=16×51= 64×17=我发现了:一个因数相同,另一个因数(),积也()。
请在上面的横线上举一个例子验证你的发现。
20×18= 20×18=10×18= 20×9=5×18= 20×3 =我发现了:一个因数相同,另一个因数(),积也()。
请在上面的横线上举一个例子验证你的发现。
2.根据以上的发现填空。
(1)42×56=2352 42×112=()21×56=()42×28=()7×56=()(2)5×14=70 5×28=()5×42=()5×56=()5×70=()3.一个因数不变,另一个因数乘几或除以几(0除外),积也()。
4.两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。
5.两个因数相乘,一个因数乘6,另一个因数不变,那么积()。
6.两个因数相乘的积是5600,如果一个因数不变,另外一个因数除以10,那么积是()。
7.两个数相乘是75,如果一个因数乘7,另一个因数除以7,积是()。
8.已知A×B=400,如果A乘3,则积是(),如果B除以5,则积是()。
9.两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积( )。
10.两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积( )。
11.两个数相乘,一个因数乘10,另一个因数也乘10,积()。
12.两个因数的积是420,如果一个因数不变,另一个因数乘8,积是()。
13.两个数相乘的积是160,如果一个因数除以2,另一个因数也除以2,积是()。
14.芳芳在计算乘法时,把一个因数末尾多写了1个0,结果得到800,正确的积是应该是()。
浙江省2022-2023学年期末试题汇编—09商的变化规律、积的变化规律(试题)-五年级上册数学人教版一.选择题(共4小题)1.(2022秋•上虞区期末)计算“7.65÷0.85”时,可以把除数转化成85,同时,把被除数扩大到原来的100倍。
这样算的依据是( )A.除法的性质B.小数的性质C.积不变规律D.商不变的性质2.(2022秋•瑞安市期末)下列算式中,与24×96结果不相等的是( )A.240×9.6B.2.4×960C.2.4×9.6D.(24×2)×(96÷2)3.(2022秋•平阳县期末)a÷0.8(a>0)的商一定( )A.大于a B.小于a C.等于a D.无法确定4.(2022秋•慈溪市期末)下列算式中,如果△不为0,得数最大的是( )A.△÷1.5B.△÷0.5C.△×1.1D.△×0.9二.填空题(共10小题)5.(2022秋•上虞区期末)在横线里填上“>”“<”或“=”。
(1)7 7.4(2)2.8÷1.5 2.8×1.5(3)2.4÷0.12 2.4÷1.2(4)3.72÷0.25 3.72×4 6.(2022秋•上虞区期末)根据214×46=9844,可知2.14×4.6= ,984.4÷0.46= 。
7.(2022秋•嘉善县期末)根据78×25=1950,直接写出下面算式的得数。
7.8×2.5= 19.5÷0.78= 1.95÷2.5= 8.(2022秋•奉化区期末)根据36×1.2=43.2,直接写出下面各题的结果。
3.6×1.2= 360×0.12= 43.2÷3.6= 4.32÷0.12= 9.(2022秋•奉化区期末)比一比,在横线上填上“>”、“<”或“=”。
一、积的变化规律1、一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。
2、两个数相乘,一个因数乘或除以几(0除外),另一个因数除以或乘相同的数,则它们的乘积不变。
(1)42×5= (2)48×16=76842×15= (48×4)×(16÷4)=420×15= (48÷8)×(16×8)=840×15= (48×5)×(16○□)=768(3)7本作业本摞起来高25毫米,全班56本作业本摞起来有多高?(4)一个宽为9米的长方形菜地,面积是252平方米,如果把这块长方形菜地的宽增加到36米,长不变,扩建后的面积是多少?二、商的变化规律1、除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。
2、被除数不变,除数乘几或除以几(0除外),商反而除以几或乘几。
3、被除数和除数都乘或除以一个相同的数(0除外),商不变。
(1)80÷16=(80○□)÷(16÷4)200÷40=(200÷20)÷(40○□)180÷15=(180×3)÷(15○□)(2)1400÷70,如果除数不变,被除数除以10,那么商应当()。
被除数不变,除数乘3,商应当()。
两个数的商是8,如果被除数不变,除数乘4,商就变成()。
一个除法算式,被除数乘15,要使商不变,除数也要()。
两个数相除的商是6,如果被除数和除数都除以12,商是()。
一个除法算式的被除数、除数都除以3后,商是20,那么原来的商是()。
.《除数是两位数的除法》1、商店里卖衣服,29元/件,49元/2件,王阿姨有185元,最多可以买多少件?还剩多少元?2、小李家距离学校520米,小李每分钟走65米,小红每分钟走60米,从家到学校小红比小李多走5分钟,小红家离学校多少米?3、每条裤子75元,商店推出优惠活动,买4条送一条,900元钱最多可以买几条这样的裤子?4、12箱蜜蜂一年可以酿900千克蜂蜜,林叔叔家养了8箱这样蜜蜂,一年可以酿多少千克蜂蜜?5、学校组织四年级的540名学生去植树,要分成9个植树点,每个植树点分成4个小组,平均每个小组有多少人?6、从山顶到山脚共998米,王林爬了14分钟,距山顶还有260米,他平均每分钟爬多少米?【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既. 往为您服务】。
命题人:葛金韬★观察下列三组算式,你发现了什么?从上面的算式中可以看出:(1)一个因数不变,另一个因数扩大到它的几倍,积也扩大相同的倍数;(2)如果两个因数都扩大,那么积就扩大两个因数扩大的倍数的乘积;(3)如果一个因数扩大,另一个因数缩小,那么积就扩大(或缩小)两个因数扩大或缩小倍数的商。
例题1在乘法算式25×8中,如果一个因数扩大到它的2倍,另一个因数不变,那么积有什么变化?例题2在乘法算式510×360中,如果一个因数扩大到它的2倍,另一个因数扩大到它的3倍,那么积有什么变化?例题3在乘法算式510×360中,如果一个因数扩大到它的6倍,另一个因数缩小到原来的三分之一,那么积有什么变化?例题4在乘法算式510×360中,如果一个因数扩大到它的2倍,另一个因数缩小到原来的六分之一,那么积有什么变化?练习1.填空在乘法算式中,一个因数不变,另一个因数扩大到它的2倍,积( );一个因数不变,另一个因数缩小到原来的三分之一,积( );一个因数扩大到它的4倍,另一个因数扩大到它的3倍,积( );一个因数缩小到原来的二分之一,另一个因数扩大到它的8倍,积( )。
2.先判断,再计算验证(1)在算式12×8中,如果一个因数不变,另一个因数扩大到它的3倍,积有什么变化?(2)在算式12×8中,如果一个因数不变,另一个因数缩小到原来的四分之一,积有什么变化?(3)在算式12×8中,如果一个因数不变,另一个因数缩小到原来的三分之一,积有什么变化?(4)在算式12×8中,如果一个因数缩小到它的三分之一,另一个因数缩小到它的四分之一,积有什么变化?(5)在算式12×8中,如果一个因数扩大到它的3倍,另一个因数扩大到它的4倍,积有什么变化?命题人:葛金韬★观察下列三组算式,你发现了什么?从上面的算式可以看出:(1)除数不变,被除数扩大到它的几倍,商也扩大相同的倍数;(2)被除数不变,除数扩大到它的几倍,商就缩小到原来的几分之一;(2)如果被除数、除数都扩大,那么商就扩大(或缩小)被除数与除数扩大(或缩小)倍数的商倍;(3)如果被除数扩大,除数缩小,那么商就扩大被除数扩大倍数与除数缩小倍数的乘积倍;(4)如果被除数缩小,除数扩大,那么商就缩小被除数缩小与除数扩大倍数的乘积分之一。
积的变化规律练习题姓名一、根据已知算式,直接写出下面各题的得数。
18×24=432105×45=4725(18÷2)×(24×2)= (105÷5)×(45×5)=(18×2)×(24÷2)= (105×3)×(45÷3)=24×75=180036×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744 (24○3)×(75○□)=1800 (36○□)×(104○□)=3744 15×24=36015×72=()30×24=()5×24=()15×12=()15×(24×)=3600 15×(24÷10)=()12×20=240(12×6)×(20×5)=()(12÷3)×(20÷4)=()(12×)×(20×)=4800 (12÷)×(20÷)=40 二、选择。
1.一个因数扩大5倍,另一个因数不变,积()。
A、缩小5倍B、不变C、扩大5倍2.一个因数扩大5倍,另一个因数缩小5倍,积()。
A、缩小5倍B、不变C、扩大5倍3.两数相乘,一个因数扩大2倍,另一个因数扩大3倍,那么积()。
A、不变B、扩大5倍C、扩大6倍4.两个因数的积是60,这时一个因数缩小4倍,另一个因数不变,现在的积是()A、240 B、60 C、155.一个长方形的面积为12平方米、把长扩大到原来的3倍,宽不变,扩大后的面积是()6.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()7.一个正方形的面积为12平方米、把边长扩大到原来的3倍,,扩大后的面积是()8.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()9.两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()10.一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()11.一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()12.一个因数扩大到原来的3倍,另一个因数缩小到原来的3倍,积是90,原来两个因数的积是()。
和.差,积、商的变化规律(一)知识点拨和、差的规律见下表(于0精讲精练【例题1】两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化?【思路】一个加数增加9,假如另一个加数不变,和就增加9;假如一个加数不变,另一个加数减少9,和就减少9;和先增加9,接着又减少9,所以不发生变化。
【练习1】1.两个数相加,一个数减8,另一个数加8,和是否变化?2.两个数相加,一个数加3.另一个数也加3.和起什么变化?3.两个数相加,一个数减6,另一个数减2.和起什么变化?【例题2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?【思路】一个加数增加10,假如另一个加数不变,和就增加10。
现在要使和增加6,那么另一个加数应减少10 — 6=4。
【练习2】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?3.两个数相加,如果一个加数减少8,要使和减少8,另一个加数应有什么变化?【例题3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8, 差就减少8。
两个数的差先增加8,接着又减少8,所以不起什么变化。
【练习3】1.两数相减,被减数减少6,减数也减少6,差是否起变化?2.两数相减,被减数增加12.减数减少12.差起什么变化?3.两数相减,被减数减少10,减数增加10,差起什么变化?【例题4】两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?【思路】如果一个因数扩大8倍,另一个因数不变,积将扩大8倍;如果一个因数不变,另一个因数缩小2倍,积将缩小2倍。
积先扩大8倍又缩小2倍,因此,积扩大了 8 ・ 2=4 倍。
【练习4】1.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?2.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?3.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?【例题5】两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?【思路】如果被除数扩大4倍,除数不变,商就扩大4倍;如果被除数不变,除数缩小2倍,商就扩大2倍。
人教版四年级数学上册方法技能分类评价4.积、商的变化规律及其应用一、认真审题,填一填。
(每小题4分,共20分)1.两个因数的积是120,其中一个因数乘4,如果另一个因数不变,这时积是( ),如果另一个因数乘2,积是( )。
2.两个数相乘,一个因数除以4,要使积不变,另一个因数应该( )。
3.两数相除,商是60,如果被除数除以2,除数乘2,商是( );如果被除数除以2,除数除以2,商是( )。
4.两数相除,被除数乘8,要使商不变,除数应( )。
5.已知482÷6=80……2,那么4820÷60=( )……( )。
二、仔细推敲,选一选。
(每小题4分,共20分)1.480÷60和48÷6的商( )。
A.相等B.不相等C.无法确定2.两数相除,商是12,若被除数除以2,要使商不变,除数要( )。
A.除以2B.乘2C.不变3.一个除法算式,被除数不变,除数乘5,要使算式仍成立,商应( )。
A.除以5B.乘5C.无法判断4.A×B=380,若A扩大到原来的10倍,则积是( )。
A.38B.3800C.380005.下列说法错误的是( )。
A. 被除数扩大到原来的10倍,除数扩大到原来的5倍,则商扩大到原来的2倍B. 两数相乘,一个因数扩大到原来的10倍,另一个因数扩大到原来的2倍,积扩大到原来的5倍C. 除法算式中,被除数除以4后,商是30,原来的商是120三、细心的你,算一算。
(共35分)1.计算出每组中第一题的结果,直接写出下面两题的结果。
(每小题1分,共9分)63÷9=80÷5=15×6=630÷90=240÷5=15×12=6300÷900=480÷15=45×12=2.根据△÷□=72,求出下列算式的结果。
(每空1分,共6分) (△×5)÷□=( )△÷(□×6)=( )(△×12)÷(□×12)=( )(△÷72)÷(□÷72)=( )(△×4)÷(□÷2)=( )(△÷4)÷(□×2)=( )3.根据规律做一做。
第10讲 变化规律(二)专题简析:积商的变化规律如下图所示(m ≠0):例1:两数相乘,一个乘数扩大3倍,要使积扩大9倍,另一个乘数应该怎样变化?练习:1 、两数相乘,一个乘数缩小至原来的16,要使积扩大3倍,另一个乘数应该怎样变化?2、两数相乘,一个乘数扩大8倍,要使积缩小至原来的12,另一个乘数应该怎样变化?3、两数相乘,一个乘数缩小至原来的15,要使积缩小至原来的110,另一个乘数应该怎样变化?例2:两数相乘,积是96.如果一个乘数缩小至原来的14,另一个乘数扩大3倍,那么积是多少?练习:1、两数相乘,积是70.如果一个乘数扩大2倍,另一个乘数缩小至原来的15,那么积是多少?2、两数相乘,积是56.如果一个乘数缩小至原来的12,另一个乘数扩大3倍,那么积是多少?3、两数相乘,积是60.如果一个乘数扩大6倍,另一个乘数也扩大6倍,那么积是多少?例3:两数相除,如果被除数缩小至原来的13,除数扩大2倍,商将怎样变化?练习:1、两数相除,被除数扩大25倍,除数缩小至原来的115,商将怎样变化?2、 两数相除,被除数缩小至原来的15,除数缩小至原来的110倍,商将怎样变化?3、 两数相除,被除数扩大3倍,除数扩大15倍,商将怎样变化?例4:两数相除,被除数扩大30倍,要使商扩大60倍,除数应该怎样变化?练习:1、 两数相除,被除数缩小至原来的18,要使商扩大 2倍,除数应该怎样变化?2、两数相除,除数扩大9倍,要使商缩小至原来的13,被除数应该怎样变化?3、 两数相除,被除数缩小至原来的112,要使商缩小 至原来的12,除数应该怎样变化?例5:两数相除,商是4,余数是10.如果被除数和除数同时扩大50倍,商是多少?余数是多少?练习:1、两数相除,商是5,余数是15.如果被除数和除数同时扩大20倍,商是多少?余数是多少?2、两数相除,商是7,余数是3.如果被除数和除数同时扩大100倍,商是多少?余数是多少?3、两数相除,商是12,余数是120.如果被除数和除数同时缩小至原来的110,商是多少?余数是多少?课后练习1、两数相乘,一个因数扩大5倍,要使积缩小到原数的15,另一个因数应怎样变化?2、两数相乘,一个因数扩大到原数的12倍,要使积扩大到原数的3倍,另一个因数应怎样变化3、两数相乘,积是72,若一个因数缩小到原数的14,另一个因数缩小到原数的12,那么积是多少?4、两数相乗,积是150,若一个因数缩小到原数的110,另一个因数扩大到原数的6倍,那么积多少?5、两数相除,被除数打扩大到原数的3倍除数缩小到原数的14,商将怎样变化?6、两数相除,被除数着小到原数的120,除数缩小到原数的15,商会怎样变化?提优练习1、两数相除,被除数扩大15倍,要使商缩小到原数的13,除数应怎样变化?2、两数相除,除数缩小到原数的12,要使商缩小到原数的14,被除数应怎样变化?3、两数相除,被除数扩大5倍,要使商扩大10倍,除数应怎样变化?4、两数相除,商是24,余数是24。
2023-2024学年五年级数学上册典型例题系列之期中专项练习:积和商的规律(原卷版)1.两个因数的积是42.6,如果一个因数扩大到原来的100倍,另一个因数缩小到原来的110,那么积是( )。
2.5.21×1.87中,如果因数5.21扩大到原数的10倍,要使积不变,因数1.87应改为( )。
3.两个数相除的商是1.34,如果被除数扩大到原来的100倍,除数缩小到原来的1100,那么商是( )。
4.根据145×18=2610在括号里填上适当的数。
14.5×( )=2.61 ( )×0.18=2.61 145×( )=261( )×1.8=26.1 1.45×( )=2.61 ( )×18=2.615.根据18×64=1152,可知1.8×0.64=( ),0.18×6.4=( )。
6.已知9.18×a=b,当a等于( )时,b>9.18;当a等于( )时,b<9.18;当a等于( )时,b=9.18;当a等于( ),b=0。
7.两个因数的积是17.8,若将其中一个因数扩大到原来的100倍,另一个因数缩小到原来的1100,则积为( )。
8.在()中填上“>”“<”或“=”。
4.92×0.01( )4.925.43×0.85( )5.436.18×1.01( )6.187.89×1.5( )78.9×0.159.两个因数相乘的积是47.5,如果一个因数扩大10倍,另一个因数不变,积就扩大( )倍,结果是( )。
10.3.7×a=b,当a( )时,b小于3.7;当a( )时,b大于3.7。
11.两个因数相乘的积是27.5,如果一个因数扩大10倍,另一个因数扩大100倍,积就扩大(),结果是()。
12.两个因数的积是12.05,其中一个因数不变,另一个因数缩小到它的1 100,积是( )。
奖 励 卡 因积变化、商不变 规律
1
1.根据15×24=360,直接写出下面各题的得数。
15×72=( ) 30×24=( ) 5×24=( ) 15×12=( ) 15×(24× )=3600 15×(24÷10)=( )
1、一个因数扩大5倍,另一个因数不变,积( )。
2、一个因数扩大5倍,另一个因数缩小5倍,积( )。
3、两数相乘,一个因数扩大2倍,另一个因数扩大3倍,那么积( )。
4、两个因数的积是60,这时一个因数缩小4倍,另一个因数不变,现在的积是( )
5、一个长方形的面积为12平方米、把长扩大到原来的3倍,宽不变,扩大后的面积是( )
6两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是( ) 7一个正方形的面积为12平方米、把边长扩大到原来的3倍,,扩大后的面积是( ) 8、一个长方形的长扩大到原来的5倍,宽扩大到原来的2倍,面积扩大到原来的( )倍。
9、两个因数的积是420,如果一个因数不变,另一个因数乘8,积是( )。
10、两个数相乘的积是160,如果一个因数除以2,另一个因数也除以2,积是( )。
11、两数相除的商是15,如果被除数、除数同时扩大10倍,商是( )。
如果被除数不变,只把除数扩大5倍,商是( )。
12、150÷30,如果被除数增加300,要使商不变,除数应该( )。
13、两数相除,如果被除数扩大5倍,要使商不变,除数应该( )。
14、1400÷70,如果除数不变,被除数除以10,那么商应该( )。
15、被除数不变,除数乘3,商应当( )。
16、两个数的商是6,如果被除数与除数都除以2,商是( )。
17、两数相除,商是80,如果去掉除数个位上的0,商是( )。
18、两个数的商是12,如果被除数除以3,除数不变,则商是( )。
19、被除数和除数同时乘6,商( )。
20、在一个除法算式里,除数除以5,要使商不变,被除数应该( )。
21、在一道除法算式里,如果被除数除以20,除数( ),商不变。
22、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积( )。
23、两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积( )。
24、两数相除,如果被除数扩大4倍,除数扩大4倍,商( )。
25、两数相除,如果被除数扩大4倍,除数缩小2倍,商( )。
26、两数相除,如果被除数缩小2倍,除数扩大4倍,商( )。
27、两数相除,被除数缩小12倍,除数缩小2倍,商( )。
28、小科在计算除法时,把除数末尾的0漏写了,结果得到的商是70,正确的商应该是( )。