实际问题与方程例3
- 格式:ppt
- 大小:2.53 MB
- 文档页数:5
第9课时实际问题与方程(3)(教材例3P77)一、解方程。
12x+2×4=566x-27÷3=33x-9×3=129(5+x)=72二、看图列方程解答。
1.2.三、商店运来150箱汽水,张叔叔每次运30箱,运了2次,剩下的几次可以运完?四、李阿姨买了5千克香蕉和4.2千克苹果一共用了49元,香蕉每千克5.6元。
请你算一算,苹果每千克多少元?五、师傅徒弟合做360个零件,6天完成任务。
师傅每天做35个,徒弟每天做多少个?六、小明买2个练习本和3支钢笔花30元,小红买同样的1个练习本和1支钢笔花10.5元。
你知道练习本和钢笔的单价各多少元吗?(用方程解)第9课时实际问题与方程(3)一、x=4x=2x=13x=3二、1.2x+25×2=150x=50 2.3x+45×2=180x=30三、解:设剩下的x次可以运完。
30(2+x)=15030(2+x)÷30=150÷302+x-2=5-2x=3答:剩下的3次可以运完。
四、解:设苹果每千克x元。
5×5.6+4.2x=4928+4.2x-28=49-28 4.2x÷4.2=21÷4.2x=5答:苹果每千克5元。
五、解:设徒弟每天做x个。
(35+x)×6=360x=25答:徒弟每天做25个。
六、解:设钢笔的单价为x元,那么练习本的单价为(10.5-x)。
3x+2×(10.5-x)=303x+21-2x=30x +21-21=30-21x=910.5-x=10.5-9=1.5(元)答:练习本的单价是1.5元,钢笔单价是9元。
人教版数学五年级上册《实际问题与方程(例3)》教学设计一. 教材分析人教版数学五年级上册《实际问题与方程(例3)》这一章节主要让学生通过解决实际问题,掌握方程的解法以及应用。
本节课的内容是在学生已经掌握了方程的解法和应用的基础上进行进一步的拓展。
教材通过生活中的实际问题,让学生运用方程解决实际问题,培养学生的解决问题的能力。
二. 学情分析五年级的学生已经具备了一定的方程知识,对于方程的解法和应用已经有了一定的了解。
但是学生在解决实际问题时,往往不知道如何将实际问题转化为方程,对于方程在实际问题中的应用还不够熟练。
因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过练习让学生熟练运用方程解决实际问题。
三. 教学目标1.让学生通过解决实际问题,掌握方程的解法以及应用。
2.培养学生将实际问题转化为方程的能力,提高学生解决问题的能力。
3.培养学生的合作交流能力,提高学生的数学思维能力。
四. 教学重难点1.教学重点:让学生通过解决实际问题,掌握方程的解法以及应用。
2.教学难点:让学生熟练运用方程解决实际问题,将实际问题转化为方程。
五. 教学方法采用问题驱动法,引导学生通过小组合作交流的方式,将实际问题转化为方程,并通过练习让学生熟练运用方程解决实际问题。
六. 教学准备1.教师准备相关的实际问题,用于引导学生解决实际问题。
2.准备相关的练习题,用于巩固学生对于方程的解法以及应用。
七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考如何解决这个问题。
例如:小明有苹果和香蕉两种水果,苹果的个数是香蕉的3倍,如果小明有15个苹果,那么他有多少个香蕉?2.呈现(10分钟)教师引导学生将实际问题转化为方程。
例如:设香蕉的个数为x,则苹果的个数为3x。
根据题目条件,可以得到方程3x = 15。
3.操练(10分钟)教师引导学生通过小组合作交流的方式,解决实际问题。
学生通过讨论,得出香蕉的个数为5,苹果的个数为15。
人教版五年级数学上册一课一练《实际问题与方程》(三)一、解答题1.甲、乙两车从相距390千米的两地相对开出。
经过3小时两车相遇,已知乙车每小时行驶60千米。
问甲车每小时行驶多少千米?2.两个港口相距168千米。
一艘客轮和一艘货轮同时从两地相对开出,4小时相遇。
客轮的速度是26千米/时,货轮的速度是多少千米/时?3.在抗疫募捐活动中,六年级捐款1620元,比五年级的2倍多20元,五年级捐款多少元?(用方程解答)4.甲乙两地长660千米,一列货车以每小时90千米的速度从甲地开往乙地,同时一列客车以每小时75千米的速度从乙地开往甲地,那么两辆车几小时后相遇?(用方程解)5.妈妈年龄比小丽年龄的3倍多4岁,妈妈今年37岁,小丽今年多少岁?6.“复兴号”高铁时速350千米,比普通列车时速的4倍还多30千米。
普通列车时速是多少千米?(列方程解答)7.故宫的面积是72万平方米,比天安门广场的面积2倍少16万平方米,天安门广场的面积是多少万平方米?(用方程方法)8.足球上黑色的皮都是五边形的,白色的皮都是六边形的。
白色皮共有20块,比黑色皮的2倍少4块,共有多少块黑色皮?(用方程方法)9.两地相距120千米,甲、乙两人骑自行车同时从两地相对出发,甲车每小时行22千米,经过3小时后与乙车相遇,乙车每小时行多少千米?(用方程解答)10.两地间的路程是420km.甲、乙两辆汽车同时从两地开出,相向而行,2.5小时相遇.甲车每小时行82km,乙车每小时行多少千米?(要求用方程解答)11.甲车的速度是每时68km,乙车的速度是每时92km,如果两车同时出发相向而行,相遇时甲车比乙车少行驶14km。
它们相遇时用了多长时间?(用方程解)12.两列火车分别从相距350千米的两地相对开出,经过3.5时相遇,甲车每时行60千米,乙车每时行多少千米?13.一个三角形的面积是2.1平方米,底是1.2米。
底边上的高是多少米?(列方程解答)14.饲养场养母鸡680只,比公鸡的3倍多20只。
教学过程:一、设疑自探:1.同学们,前面我们学习了方程,以及用方程解决简单的问题。
谁能说说关于方程,你都知道些什么?2.(超市最近做促销)出示习题:妈妈买了苹果和梨各2kg,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?(口头回答:求一共付多少钱怎么计算)听说超市做促销,李阿姨也迫不及待去超市卖水果,她苹果和梨各要了2千克,一共付了10.4元。
已知梨每千克2.8元,你们计算出苹果每千克多少钱吗?本节课我们就继续来学习:列方程解决实际问题(教师板书)3.看了这个课题,你有什么问题?请大胆地提出来。
预设:这节课要学习什么类型的列方程解决实际问题?如何找等量关系?解题步骤和以前学的一样吗?4、出示自探提示,组织学生自探:自学课本77页例3,思考并解决以下问题:(1)题目中的已知条件和问题分别是什么?(2)试根据题意写出不同的等量关系。
(3)根据你写的等量关系列出方程,思考2x表示什么?2.8×2表示什么?那么2.8+x呢?试着用你喜欢的方法解方程。
(4)列方程解决实际问题的关键是什么?需要注意什么?5.学生自探,师巡视。
二、解疑合探:1.小组合探:交流自探情况,特别是自探没有搞明白的问题。
2.学生自学要结束时,教师出示小组讨论要求、小组展示评价分工、展示方式及要求。
展示要求:(1)口头展示的同学要求声音洪亮,语言简洁明了;(2)书面展示的同学书写要规范、认真,思路清晰,排版整齐;(3)非展示同学结合展示认真倾听,迅速记录,做好点评准备,及时提问和补充观点。
评价要求:(1)点评同学对展示的内容从板书规范、内容正确性及方法归纳的合理性上做点评并发表自己不同的观点,给展示小组打分(最高分10分);(2)老师给评价学生打分,从声音大小,语言完整度,条理是否清晰是否有礼貌等方面打分。
(最高分10分)3.全班交流自探情况(1)交流第一个问题:这道题中,已知条件是苹果和梨各要2千克,梨每千克2.8元,一共10.4元。
人教版数学五年级上册《实际问题与方程(例3)》教学设计一. 教材分析人教版数学五年级上册《实际问题与方程(例3)》这一节内容,是在学生已经掌握了方程的意义、等式的性质以及解简单方程的基础上进行学习的。
本节课通过实例引出方程,让学生在解决实际问题的过程中,体会方程的优越性,培养学生的方程思想,提高学生解决问题的能力。
二. 学情分析五年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们对方程的概念和性质有一定的了解。
但在解决实际问题时,还可能存在对问题分析不深、思路不清晰、方程应用不灵活等问题。
因此,在教学过程中,教师要注重引导学生深入分析问题,明确等量关系,熟练运用方程解决问题。
三. 教学目标1.知识与技能:使学生掌握解实际问题的基本步骤,能够找出问题中的等量关系,正确列出方程,并求解。
2.过程与方法:通过解决实际问题,培养学生的方程思想,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的精神。
四. 教学重难点1.重点:找出问题中的等量关系,列出方程,求解。
2.难点:对实际问题进行分析,找出隐含的等量关系,列出方程。
五. 教学方法采用问题驱动法、案例教学法、小组讨论法等多种教学方法,引导学生主动参与课堂,提高学生的学习兴趣和解决问题的能力。
六. 教学准备1.教师准备:熟练掌握教材内容,准备相关实例和练习题。
2.学生准备:掌握方程的意义和等式的性质,预习本节课内容。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生回忆方程的解法,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示例3,让学生观察并找出问题中的等量关系。
学生独立思考后,教师学生进行小组讨论,引导学生明确等量关系,并指导学生如何列出方程。
3.操练(10分钟)教师给出几个类似的实际问题,让学生独立解决,巩固所学知识。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师学生进行小组竞赛,看哪个小组解决问题的速度快、正确率高。
可编辑修改精选全文完整版实际问题与方程(例3)教学内容:这部分内容是在学生能初步根据情境找出题中的数量关系,掌握了列方程解决实际问题的一般步骤基础上学习稍复杂的列方程解决实际问题。
教学目标:1、结合具体的情境,初步学会用方程来解决形如ax±ab=c的实际问题。
2、会用摘录的方法直观、清晰地理解题意和分析数量间的相等关系。
3、通过题组训练,体会用方程解决问题的好处,沟通算术法解题与方程法解题的联系。
4、在用方程解决形如ax±ab=c的实际问题中,感受数学的模型思想。
教学重点:初步学会用方程来解决形如ax±ab=c的实际问题,体会用方程解决问题的好处。
教学难点:找等量关系以及体会用方程解决问题的好处。
教学过程:一、铺垫1、出示:梨每千克2.8元,苹果每千克2.4元。
许阿姨买了苹果和梨各2kg,一共要付多少元?2、学生根据提纲分析题目。
师:题目讲了一件什么事?(课件出示:苹果、梨)有哪几个数量?(课件出示:单价、数量、总价和)信息和问题分别是什么?根据学生的回答课件出示:3、学生思考,说出数量关系,并列式计算。
师:在练习纸上完成。
预设生1:苹果的总价+梨的总价=总价和2.4×2+2.8×2=10.4(元)预设生2:两种水果的单价和×数量=总价和(2.4+2.8)×2=10.4(元)4、比较:这两种解法有什么不同?又有什么联系?预设:第一种是先求苹果和梨各自的总价,第二种是先求两种水果的单价和。
它们之间的联系其实就是利用了乘法分配律。
5、揭示课题:今天这节课,我们可以利用这题的解题思路继续学习“实际问题与方程”。
(板书课题:实际问题与方程)6、你能说说列方程解决问题主要有哪些步骤吗?学生汇报:教师板书:①弄清题意,设未知量为x。
设②分析题意,找等量关系。
找③根据等量关系列出方程。
列④解方程。
解⑤检验答案是不是方程的解。
验二、主动探究1、把复习题改一改,出示P77例3:让学生观察与上一题有什么区别。
《实际问题与方程(3)》(教案)一、教学目标1. 让学生掌握方程的概念,能正确书写简单的一元一次方程。
2. 培养学生运用方程解决实际问题的能力,提高学生的逻辑思维和抽象思维能力。
3. 培养学生合作交流、动手操作的能力,激发学生学习数学的兴趣。
二、教学重点与难点1. 教学重点:掌握方程的概念,能正确书写简单的一元一次方程。
2. 教学难点:运用方程解决实际问题,理解方程的解法和应用。
三、教学过程1. 导入新课通过复习导入,让学生回顾已学过的数学知识,为新课的学习做好铺垫。
2. 探究新知(1)方程的概念通过实例引入方程的概念,让学生理解方程是表示两个数量相等的式子。
(2)一元一次方程的书写引导学生观察一元一次方程的特点,掌握其书写方法。
(3)解一元一次方程以实例为例,引导学生探究解一元一次方程的方法,总结解题步骤。
3. 实践应用(1)课堂练习设计一些一元一次方程的题目,让学生独立完成,巩固所学知识。
(2)小组合作安排一些实际问题,让学生分组讨论,运用方程解决问题。
4. 总结提升让学生总结本节课所学内容,加深对知识的理解和记忆。
5. 作业布置布置一些与课堂内容相关的作业,巩固所学知识。
四、教学反思1. 在教学过程中,要注意引导学生积极参与,充分调动学生的主观能动性。
2. 关注学生的学习反馈,及时调整教学方法和进度,确保教学效果。
3. 注重培养学生的数学思维能力和实际应用能力,提高学生的综合素质。
总之,本节课通过导入、探究、实践、总结等环节,让学生掌握方程的概念,学会书写一元一次方程,并能运用方程解决实际问题。
在教学过程中,注重培养学生的合作交流、动手操作能力,激发学生学习数学的兴趣,提高学生的数学素养。
重点关注的细节是“解一元一次方程”的教学过程。
以下是对这个重点细节的详细补充和说明:在“解一元一次方程”的教学过程中,教师需要引导学生逐步理解并掌握解方程的方法和步骤。
这个过程可以通过以下步骤进行:1. 引入实例教师可以提供一个简单的实际问题,例如:“小明买了3本书,花了27元。