2019-2020年高中数学 第二章 平面向量 第二节 平面向量的线性运算(第三课时)示范教案 新人教A版必修4
- 格式:doc
- 大小:5.85 MB
- 文档页数:13
平面向量的坐标及其运算【教学过程】一、基础铺垫1.平面向量的坐标平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b垂直,记作a⊥b.规定零向量与任意向量都垂直.如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为正交基底;在正交基底下向量的分解称为向量的正交分解.一般地,给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称(x,y)为向量a的坐标,记作a=(x,y).方便起见,以后谈到平面直角坐标系时,默认已经指定了与x轴及y轴的正方向同向的两→对应的个单位向量.此时,如果平面上一点A的坐标为(x,y)(通常记为A(x,y)),那么向量OA→=(x,y);反之结论也成立.坐标也为(x,y),即OA2.平面上向量的运算与坐标的关系设平面上两个向量a,b满足a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2__且y1=y2;a+b=(x1+x2,y1+y2).设u,v是两个实数,那么u a+v b=(ux1+vx2,uy1+vy2),u a-v b=(ux1-vx2,uy1-vy2).如果向量a=(x,y),则|a|■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.3.平面直角坐标系内两点之间的向量公式与中点坐标公式设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点,则AB →=(x 2-x 1,y 2-y 1); 设线段AB 中点为M (x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 224.向量平行的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 2y 1=x 1y 2.■名师点拨两向量的对应坐标成比例,这种形式较易记忆,而且不易出现搭配错误.二、合作探究1.平面向量的坐标表示【例1】如图,在平面直角坐标系xOy 中,已知OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA→=a ,AB →=b ,四边形OABC 为平行四边形. (1)求向量a ,b 的坐标;(2)求向量BA→的坐标; (3)求点B 的坐标.【解】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45°=4×22=22,AM =OA ·sin 45°=4×22=22, 所以A (22,22),故a =(22,22).因为∠AOC =180°-105°=75°,∠AOy =45°,所以∠COy =30°.又OC =AB =3,所以C ⎝ ⎛⎭⎪⎫-32,332, 所以AB →=OC →=⎝ ⎛⎭⎪⎫-32,332, 即b =⎝ ⎛⎭⎪⎫-32,332.(2)BA →=-AB →=⎝ ⎛⎭⎪⎫32,-332. (3)因为OB→=OA →+AB → =(22,22)+⎝ ⎛⎭⎪⎫-32,332 =⎝⎛⎭⎪⎫22-32,22+332. 所以点B 的坐标为(22-32,22+332).【规律方法】平面内求点、向量坐标的常用方法(1)求一个点的坐标:可利用已知条件,先求出该点相对应坐标原点的位置向量的坐标,该坐标就等于相应点的坐标.(2)求一个向量的坐标:首先求出这个向量的始点、终点的坐标,再运用终点坐标减去始点坐标即得该向量的坐标.2.平面向量的坐标运算【例2】(1)已知a +b =(1,3),a -b =(5,7),则a =________,b =________.(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM→=3CA →,CN →=2CB →,求M ,N 及MN →的坐标.【解】(1)由a +b =(1,3),a -b =(5,7),所以2a =(1,3)+(5,7)=(6,10),所以a =(3,5),2b =(1,3)-(5,7)=(-4,-4),所以b =(-2,-2).(2)法一(待定系数法):由A (-2,4),B (3,-1),C (-3,-4),可得CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3), 所以CM→=3CA →=3(1,8)=(3,24), CN→=2CB →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),则CM →=(x 1+3,y 1+4)=(3,24),x 1=0,y 1=20;CN →=(x 2+3,y 2+4)=(12,6),x 2=9,y 2=2,所以M (0,20),N (9,2),MN→=(9,2)-(0,20)=(9,-18). 法二(几何意义法):设点O 为坐标原点,则由CM→=3CA →,CN →=2CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM→=3OA →-2OC →,ON →=2OB →-OC →, 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2), 即点M (0,20),N (9,2),故MN→=(9,2)-(0,20)=(9,-18). 【规律方法】平面向量坐标的线性运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.3.判定直线平行、三点共线【例3】(1)已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为()A .-13B .9C .-9D .13(2)已知A (-1,-1),B (1,3),C (1,5),D (2,7),向量AB→与CD →平行吗?直线AB 平行于直线CD 吗?【解】(1)选C .设C (6,y ),因为AB→∥AC →, 又AB→=(-8,8),AC →=(3,y +6), 所以-8×(y +6)-3×8=0,所以y =-9.(2)因为AB→=(1-(-1),3-(-1))=(2,4), CD→=(2-1,7-5)=(1,2). 又2×2-4×1=0,所以AB→∥CD →. 又AC→=(2,6),AB →=(2,4),所以2×4-2×6≠0, 所以A ,B ,C 不共线,所以AB 与CD 不重合,所以AB ∥CD .【规律方法】向量共线的判定方法4.已知平面向量共线求参数【例4】已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?【解】法一(共线向量定理法):k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),所以⎩⎨⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13. 当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),因为λ=-13<0,所以k a +b 与a -3b 反向.法二(坐标法):由题知k a +b =(k -3,2k +2),a -3b =(10,-4),因为k a +b 与a -3b 平行,所以(k -3)×(-4)-10×(2k +2)=0,解得k =-13.此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ), 所以当k =-13时,k a +b 与a -3b 平行,并且反向.【规律方法】已知平面向量共线求参数的思路(1)利用共线向量定理a =λb (b ≠0)列方程组求解.(2)利用向量平行的坐标表达式x 1y 2-x 2y 1=0直接求解.三、课堂练习1.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是()A .1B .2C .3D .4解析:选C .由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A .a =(0,0),b =(2,3)B .a =(1,-3),b =(2,-6)C .a =(4,6),b =(6,9)D .a =(2,3),b =(-4,6)解析:选D .只有D 选项中两个向量不共线,可以作为表示它们所在平面内所有向量的一组基底,故选D .3.已知两点A (2,-1),B (3,1),则与AB→平行且方向相反的向量a 可以是() A .(1,-2)B .(9,3)C .(-2,4)D .(-4,-8)解析:选D .由题意,得AB→=(1,2),所以a =λAB →=(λ,2λ)(其中λ<0).符合条件的只有D 项,故选D .4.已知平行四边形OABC ,其中O 为坐标原点,若A (2,1),B (1,3),则点C 的坐标为________.解析:设C 的坐标为(x ,y ),则由已知得OC→=AB →,所以(x ,y )=(-1,2). 答案:(-1,2)5.已知点A (1,3),B (4,-1),则与向量AB→同方向的单位向量为________. 解析:AB →=(3,-4),则与AB →同方向的单位向量为AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 答案:⎝ ⎛⎭⎪⎫35,-45。
《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
平面向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=x+x',y+y'.a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:a+b+c=a+b+c.2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=x,y b=x',y' 则 a-b=x-x',y-y'.4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:λa•b=λa•b=a•λb.向量对于数的分配律第一分配律:λ+μa=λa+μa.数对于向量的分配律第二分配律:λa+b=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积内积、点积是一个数量,记作a•b.若a、b不共线,则a •b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a交换律;λa•b=λa•b关于数乘法的结合律;a+b•c=a•c+b•c分配律;向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:a•b•c≠a•b•c;例如:a•b^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由 a•b=a•c a≠0,推不出 b=c.3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积外积、叉积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a 和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;λa×b=λa×b=a×λb;a+b×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式向量P1P=λ•向量PP2设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1x1,y1,P2x2,y2,Px,y,则有OP=OP1+λOP21+λ;定比分点向量公式x=x1+λx2/1+λ,y=y1+λy2/1+λ.定比分点坐标公式我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.向量垂直的充要条件a⊥b的充要条件是 a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.1、线性运算①a+b=b+a ②a+b+c=a+b+c ③λμa=λμa. ④λ+μa=λa+μa. ⑤λa±b=λa±λb ⑥a,b共线→b=λa2、坐标运算,其中ax1,y1, bx2,y2①a+b= x1+x2,y1+y2 ②a-b= x1-x2,y1-y2 ③λa=λx1,λy1 ④点Aa,b,点Bc,d,则向量AB=c-a,b-d ⑤点Aa,b,点Bc,d,则向量BA=a-c,b-d3、数量积运算①ab=∣a∣∣b∣cosθ②ab=ba 交换律③λab=λab =a λb结合律,注意向量间无结合律④a±bc=ac±bc分配律⑤若ab-c=0,则b=c或a垂直于b-c ⑥a±b2=a2±2ab+b2 ⑦a+ba-b=a2-b2⑧ax1,y1, bx2,y2,则ab=x1x2+y1y2,∣a∣2 =x2+y2,∣a∣=√x2+y2 a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:cosθ=ab/∣a∣∣b∣=x1x2+y1y2/√x12+y12√x22+y22。
名称定义向量既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或称模) 零向量长度为零的向量叫作零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行向量表示两个向量的有向线段所在的直线平行或重合,则这两个向量叫作平行向量,平行向量又叫共线向量.规定:0与任一向量平行相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量易误提醒1.对于平行向量易忽视两点:(1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件.2.单位向量的定义中只规定了长度没有方向限制.[自测练习]1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:若a与b都是零向量,则a=b,故选项C正确.答案:C2.若m∥n,n∥k,则向量m与向量k( )A.共线B.不共线C.共线且同向D.不一定共线解析:可举特例,当n=0时,满足m∥n,n∥k,故A,B,C选项都不正确,故D 正确.答案:D向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律: (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb易误提醒1.作两个向量的差时,要注意向量的方向是指向被减向量的终点. 2.数乘向量仍为向量只是模与方向发生变化,易认为数乘向量为实数.[自测练习]3.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( ) A.AB →+AC →=BC →B.AB →=12BC →+DA →C.AD →-DC →=AC → D .2CD →+BA →=CA →解析:本题考查向量的线性运算.A 错,应为AB →+AC →=2AD →;B 错,应为12BC →+DA →=BD →+DA →=BA →;C 错,应为AC →=AD →+DC →;D 正确,2CD →+BA →=CB →+BA →=CA →,故选D.答案:D知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 易误提醒1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 2.要注意向量共线与三点共线的区别与联系. 必记结论 三点共线等价关系:A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[自测练习]4.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13考点一 向量的基本概念|1.已知a ,b ,c 是任意向量,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ∥b ,则a ,b 方向相同或相反; ③若a =-b ,则|a |=|b |;④若a ,b 不共线,则a ,b 中至少有一个为零向量,其中正确命题的个数是( ) A .4 B .3 C .2D .1解析:按照平面向量的概念逐一判断.若b =0,则①②都错误;若a =-b ,则|a |=|b |,③正确;若a ,b 不共线,则a ,b 中一定没有零向量,④错误,所以正确命题只有1个.答案:D2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a ,b 共线且方向相反,因此当向量a ,b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A中向量a ,b 的方向相同,选项B 中向量a ,b 共线,方向相同或相反,选项C 中向量a ,b 的方向相反,选项D 中向量a ,b 互相垂直,故选C.答案:C解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.考点二 平面向量的线性运算|(1)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →[解析] 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.[答案] A(2)(2015·东北三校联考(二))已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________. [解析] 因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB→-CA →)=13CA →+23CB →,所以λ=23.[答案]3平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.1.设O 为△ABC 内部的一点,且OA →+OB →+2OC →=0,则△AOC 的面积与△BOC 的面积之比为( )A.32 B.53 C .2D .1解析:取AB 的中点E ,连接OE ,则有OA →+OB →+2OC →=2(OE →+OC →)=0,OE →+OC →=0,所以E ,O ,C 三点共线,所以有△AEO 与△BEO 面积相等,因此△AOC 的面积与△BOC 的面积之比为1,故选D.答案:D考点三 共线向量定理的应用|设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [解析] 由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.[答案]21.共线向量定理的应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB→=λAC→,则A、B、C三点共线.2.设两个非零向量e1和e2不共线.(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A,C,D三点共线;(2)如果AB→=e1+e2,BC→=2e1-3e2,AF→=3e1-k e2,且A,C,F三点共线,求k的值.解:(1)证明:AB→=e1-e2,BC→=3e1+2e2,∴AC→=AB→+BC→=4e1+e2,又CD→=-8e1-2e2,∴CD→=-2AC→,∴AC→与CD→共线.又∵AC→与CD→有公共点C,∴A,C,D三点共线.(2)∵AB→=e1+e2,BC→=2e1-3e2,∴AC→=AB→+BC→=3e1-2e2.∵A,C,F三点共线.∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.13.方程思想在平面向量呈线性运算中的应用【典例】 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.[思路点拨] (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然OM →能用a ,b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. [解] 设OM →=m a +n b ,则AM →=OM →-OA →=m a +m b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A ,M ,D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C ,M ,B 三点共线, ∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .[方法点评] (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是,找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A ,M ,D 三点共线和B ,M ,C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[跟踪练习] 如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG→=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.答案:6课时跟踪检测 A 组 考点能力演练1.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.答案:C2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( ) A.23OA →-13OB → B .-13OA →+23OB →C .2OA →-OB →D .-OA →+2OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA →+OB →=0,所以OC →=2OA →-OB →,故选C.答案:C3.已知在△ABC 中,M 是BC 的中点,设CB →=a ,CA →=b ,则AM →=( ) A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a .答案:A4.(2015·海淀期中)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =( )A .2B .-2C .1D .-1解析:AC →=AB →+BC →=AB →+32BD →=AB →+32(AD →-AB →)=-12AB →+32AD →,则m =-12,n=32,所以m -n =-2. 答案:B5.若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a +b )三个向量的终点在同一条直线上,则t =( )A.12 B .-12C .2D .-2 解析:设OA →=a ,OB →=t b ,OC →=13(a +b ),则AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t a -a .要使A ,B ,C 三点共线,只需AC →=λAB →,即-23a +13b =λt b -λa 即可,又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧ -23=-λ,13=λt ,解得⎩⎪⎨⎪⎧λ=23,t =12,∴当三个向量的终点在同一条直线上时,t =12.答案:A6.(2016·长沙一模)在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC→+BC →)=12(5e 1+3e 2).答案:12(5e 1+3e 2)7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________.解析:因为a 与b 共线,所以a =x b ,⎩⎪⎨⎪⎧x =2,λx =-1,故λ=-12.答案:-128.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则|OA →|的最大值为________.解析:因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.答案:29.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.10.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心. 解:如图,记AM →=AB→|AB→|,AN →=AC→|AC→|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.B 组 高考题型专练1.)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD →C.AD →D.12BC → 解析:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选C. 答案:C2.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥||a |-|b ||,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B.答案:B3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:124.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析:∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =BC →,又△ABC 是边长为2的等边三角形,∴|a |=1,|b |=2,故①正确,②错误,③错误;由b =BC →,知b ∥BC →,故④正确;∵4a +b =2AB →+BC →=AB →+AC →,∴(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故⑤正确.答案为①④⑤.答案:①④⑤。
2019-2020年高中数学 第二章 平面向量 第二节 平面向量的线性运算(第三课时)示范教案 新人教A 版必修4教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a 是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路 1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a +a +a =3a ,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.思路 2.一物体做匀速直线运动,一秒钟的位移对应的向量为a ,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a 吗?怎样用图形表示?由此展开新课.推进新课新知探究提出问题①已知非零向量a ,试一试作出a +a +a 和-a +-a +-a②你能对你的探究结果作出解释,并说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图1可发现,OC →=OA →+AB →+BC →=a +a +a .类似数的乘法,可把a+a +a 记作3a ,即OC →=3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a|=3|a|.同样,由图1可知,图1PN→=PQ→+QM→+MN→=(-a)+(-a)+(-a),即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律1λμa=λμa;2λ+μa=λa+μa;3λa+b=λa+λb.(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a 与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b 同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生作进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .解:(1)原式=(-3×4)a =-12a ;(2)原式=3a +3b -2a +2b -a =5b ;(3)原式=2a +3b -c -3a +2b -c =-a +5b -2c .点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.例2如图2,已知任意两个非零向量a 、b ,试作OA =a +b ,OB =a +2b ,OC =a +3b .你能判断A 、B 、C 三点之间的位置关系吗?为什么?图2活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A ,B ,C 三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:如图3,分别作向量OA →、OB →、OC →,过点A 、C 作直线AC .观察发现,不论向量a 、b怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.图3事实上,因为AB →=OB →-OA →=a +2b -(a +b )=b ,而AC →=OC →-OA →=a +3b -(a +b )=2b ,于是AC →=2AB →.所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3如图4,ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?图4活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.解:在ABCD 中,∵AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b ,又∵平行四边形的两条对角线互相平分,∴MA →=-12AC →=-12(a +b )=-12a -12b , MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b , MD →=-MB →=-12DB →=-12a +12b . 点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证:EF →=12(AB →+DC →). 活动:教师引导学生探究,能否构造三角形,使EF 作为三角形中位线,借助于三角形中位线定理解决,或创造相同起点,以建立向量间关系.鼓励学生多角度观察思考问题.证法一:过点C 在平面内作CG →=AB →,则四边形ABGC 是平行四边形,故F 为AG 中点.(如图5)图5∴EF 是△ADG 的中位线.∴EF 綊12DG . ∴EF →=12DG →. 而DG →=DC →+CG →=DC →+AB →,∴EF →=12(AB →+DC →). 证法二:如图6,连接EB 、EC ,则有EB →=EA →+AB →,EC →=ED →+DC →,图6又∵E 是AD 的中点,∴EA →+ED →=0,即有EB →+EC →=AB →+DC →.以EB →与EC →为邻边作▱EBGC ,则由F 是BC 的中点,可得F 也是EG 的中点.∴EF →=12EG →=12(EB →+EC →)=12(AB →+DC →). 点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习,做到准确熟练运用.例2已知OA →和OB →是不共线向量,AP →=tAB →(t ∈R ),试用OA →、OB →表示OP →.活动:教师引导学生思考,由AP →=tAB →(t ∈R )知A 、B 、P 三点共线,而OP →=OA →+AP →,然后以AB →表示AP →,进而建立OA →,OB →的联系.本题可让学生自己解决,教师适时点拨.解:OP →=OA →+AP →=OA →+t ·AB →=OA →+t ·(OB →-OA →)=(1-t )·OA →+t ·OB →.点评:灵活运用向量共线的条件.若令1-t =m ,t =n ,则OP →=m ·OA →+n ·OB →,m +n =本节练习解答:1.图略.2.AC →=57AB →,BC →=-27AB →. 点评:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是BC →与AB →反向.3.(1)b =2a ;(2)b =-74a ;(3)b =-12a ;(4)b =89a . 4.(1)共线;(2)共线.5.(1)3a -2b ;(2)-1112a +13b ;(3)2y a . 6.图略.课堂小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2 A 组题11、12.设计感想1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a =0),它的几何意义是把向量a 沿a 的方向或a 的反方向放大或缩小,当λ>0时,λa 与a 方向相同,当λ<0时,λa 与a 方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的重要地位,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.备课资料一、向量的数乘运算律的证明设a 、b 为任意向量,λ、μ为任意实数,则有(1)λ(μa )=(λμ)a ; ①(2)(λ+μ)a =λa +μa ; ②(3)λ(a +b )=λa +λb . ③证明:(1)如果λ=0或μ=0或a =0,则①式显然成立.如果λ≠0,μ≠0,且a ≠0,则根据向量数乘的定义,有|λ(μa )|=|λ||μa |=|λ||μ||a |,|(λμ)a |=|λμ||a |=|λ||μ||a |.所以|λ(μa )|=|(λμ)a |.如果λ、μ同号,则①式两边向量的方向都与a 同向;如果λ、μ异号,则①式两边向量的方向都与a 反向.因此,向量λ(μa )与(λμ)a 有相等的模和相同的方向,所以这两个向量相等.(2)如果λ=0或μ=0或a =0,则②显然成立.如果λ≠0,μ≠0且a ≠0,可分如下两种情况:当λ、μ同号时,则λa 和μa 同向,所以|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a |,|λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |,即有|(λ+μ)a |=|λa +μa |.由λ、μ同号,知②式两边向量的方向或都与a 同向,或都与a 反向,即②式两边向量的方向相同.综上所述,②式成立.如果λ、μ异号,当λ>μ时,②式两边向量的方向都与λa 的方向相同;当λ<μ时,②式两边向量的方向都与μa 的方向相同.还可证|(λ+μ)a |=|λa +μa |.因此②式也成立.(3)当a =0,b =0中至少有一个成立,或λ=0,λ=1时,③式显然成立.当a ≠0,b ≠0且λ≠0,λ≠1时,可分如下两种情况:当λ>0且λ≠1时如图7,在平面内任取一点O 作OA →=a ,AB →=b ,OA 1→=λa ,A 1B 1→=λb ,则OB →=a +b ,OB 1→=λa +λb .图7由作法知AB →∥A 1B 1→,有∠OAB =∠OA 1B 1,|A 1B 1→|=λ|AB →|.所以|OA 1→||OA →|=|A 1B 1→||AB →|=λ. 所以△AOB ∽△A 1OB 1.所以|OB 1→||OB →|=λ,∠AOB =∠A 1OB 1. 因此O 、B 、B 1在同一条直线上,|OB 1→|=|λOB →|,OB 1→与λOB →的方向也相同.所以λ(a +b )=λa +λb .当λ<0时,由图8可类似证明λ(a +b )=λa +λb .图8所以③式也成立.二、备用习题1.13[12(2a +8b )-(4a -2b )]等于( ) A .2a -b B .2b -a C .b -a D .a -b答案:B2.设两非零向量e 1、e 2不共线,且k e 1+e 2与e 1+k e 2共线,则k 的值为( )A .1B .-1C .±1D .0答案:C3.若向量方程2x -3(x -2a )=0,则向量x 等于( )A.65a B .-6a C .6a D .-65a 答案:C4.在△ABC 中,AE →=15AB →,EF ∥BC ,EF 交AC 于F ,设AB →=a ,AC →=b ,则BF →用a 、b 表示的形式是BF →=________.答案:-a +15b 5.在△ABC 中,M 、N 、P 分别是AB 、BC 、CA 边上的靠近A 、B 、C 的三等分点,O 是△ABC平面上的任意一点,若OA →+OB →+OC →=13e 1-12e 2,则OM →+ON →+OP →=________. 答案:13e 1-12e 2. 6.已知△ABC 的重心为G ,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,求证:OG →=13(a +b +c ).答案:证明:连接AG 并延长,设AG 交BC 于M .∵AB →=b -a ,AC →=c -a ,BC →=c -b ,∴AM →=AB →+12BC →=(b -a )+12(c -b )=12(c +b -2a ). ∴AG →=23AM →=13(c +b -2a ). ∴OG →=OA →+AG →=a +13(c +b -2a )=13(a +b +c ). 7.对判断向量a =-2e 与b =2e 是否共线?有如下解法:解:∵a =-2e ,b =2e ,∴b =-a.∴a 与b 共线.请根据本节所学的共线知识给以评析.如果解法有误,请给出正确解法.答案:评析:乍看上述解答,真是简单明快.然而,仔细研究题目已知,却发现其解答存在问题,这是因为原题已知中对向量e 并无任何限制,那么就应允许e =0,而当e =0时,显然,a =0,b =0,此时,a 不符合定理中的条件,且使b =λa 成立的λ值也不唯一(如λ=-1,λ=1,λ=2等均可使b =λa 成立),故不能应用定理来判断它们是否共线.可见,对e =0的情况应用别的办法判断才妥.综上分析,此题应解答如下:解:(1)当e =0时,则a =-2e =0.由于“零向量与任一向量平行”且“平行向量也是共线向量”,所以此时a 与b 共线.(2)当e ≠0时,则a =-2e ≠0,b =2e ≠0,∴b =-a 〔这时满足定理中的a ≠0,及有且只有一个实数λ(λ=-1),使得b =λa 成立〕.∴a 与b 共线.综合(1)(2),可知a 与b 共线.2019-2020年高中数学 第二章 平面向量 第二节 平面向量的线性运算(第二课时)示范教案 新人教A 版必修4教学分析向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.三维目标1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量.2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量.重点难点教学重点:向量的减法运算及其几何意义.教学难点:对向量减法定义的理解.课时安排1课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现.推进新课新知探究提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念?③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a 和-a 互为相反向量.于是-(-a )=a .我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0.所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0.(1)平行四边形法则如图1,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义,知AE →=a +(-b )=a -b .图1又b +BC →=a ,所以BC →=a -b .由此,我们得到a -b 的作图方法.(2)三角形法则如图2,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从b 的终点指向a 的终点的向量,这是向量减法的几何意义.图2讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x 的相反数是-x 类似,我们规定,与a 长度相等,方向相反的量,叫做a 的相反向量,记作-a .③向量减法的定义.我们定义a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a 的终点到b 的终点作向量,那么所得向量是什么?②改变上图中向量a 、b 的方向使a∥b ,怎样作出a -b 呢?讨论结果:①AB →=b -a .②略.应用示例例1如图3(1),已知向量a 、b 、c 、d ,求作向量a -b ,c -d .图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图3(2),在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,OD →=d . →→例2如图4,在ABCD 中,AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC →=a +b ,同样,由向量的减法,知DB →=AB →-AD →=a -b .图5 (1)若非零向量a 与b 的方向相同或相反,则a +b 的方向必与a 、b 之一的方向相同.(2)△ABC 中,必有AB →+BC →+CA →=0.(3)若AB →+BC →+CA →=0,则A 、B 、C 三点是一个三角形的三顶点.(4)|a +b|≥|a -b |.活动:根据向量的加、减法及其几何意义.解:(1)a 与b 方向相同,则a +b 的方向与a 和b 方向都相同;若a 与b 方向相反,则有可能a 与b 互为相反向量,此时a +b =0的方向不确定,说与a 、b 之一方向相同不妥.(2)由向量加法法则AB →+BC →=AC →,AC →与CA →是互为相反向量,所以有上述结论.(3)因为当A 、B 、C 三点共线时也有AB →+BC →+AC →=0,而此时构不成三角形.(4)当a 与b 不共线时,|a +b|与|a -b|分别表示以a 和b 为邻边的平行四边形的两条对角线的长,其大小不定.当a 、b 为非零向量共线时,同向则有|a +b|>|a -b|,异向则有|a +b|<|a -b |;当a 、b 中有零向量时,|a +b|=|a -b |.综上所述,只有(2)正确.例4若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( )A .[3,8]B .(3,8)C .[3,13]D .(3,13)解析:BC →=AC →-AB →.(1)当AB →、AC →同向时,|BC →|=8-5=3;(2)当AB →、AC →反向时,|BC →|=8+5=13;(3)当AB →、AC →不共线时,3<|BC →|<13.综上,可知3≤|BC →|≤13.答案:C课本本节练习解答:1.直接在课本上据原图作(这里从略).2.DB →,CA →,AC →,AD →,BA →.点评:解题中可以将减法变成加法运算,如AB →-AD →=DA →+AB →=DB →,这样计算比较简便.3.图略.课堂小结1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论. 作业课本习题2.2 A 组6、7、8.设计感想1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a 、b 的差,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,第二种作图方法比较简捷.2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a -b 的箭头方向要指向a ,如果指向b 则表示b -a ,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.备课资料一、向量减法法则的理解向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量.只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:例1化简:AB →-AC →+BD →-CD →.解:原式=CB →+BD →-CD →=CD →-CD →=0.例2化简OA →+OC →+BO →+CO →.解:原式=(OA →+BO →)+(OC →+CO →)=(OA →-OB →)+0=BA →.二、备用习题1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b -a ③0-a =-a ④-(-a )=a ⑤a +(-a )=0A .5B .4C .3D .2答案:B2.如图7,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则AF →-DB →等于( )图7A.FD →B.FC →C.FE →D.BE →答案:D3.下列式子中不能化简为AD →的是( )A .(AB →+CD →)+BC →B .(AD →+MB →)+(BC →+CM →)C.MB →+AD →-BM →D.OC →-OA →+CD →答案:C4.已知A 、B 、C 三点不共线,O 是△ABC 内一点,若OA →+OB →+OC →=0,则O 是△ABC 的( )A .重心B .垂心C .内心D .外心答案:A。