51单片机最简单的多任务操作系统
- 格式:doc
- 大小:44.00 KB
- 文档页数:4
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.下面给出一个51单片机的最小系统电路图.说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的5 1单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐 C 取10u,R取.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
开机的时候为什么为复位在电路图中,电容的的大小是10uF,电阻的大小是10k。
RTX51 Tiny 实时内核理解声明:以下来自网络整理而来并非本人作品,觉得挺容易懂所以放入博客以便后来学习者参考RTX51 Tiny中容易混淆的问题RTX51 Tiny是 Keil uVision中自带的一个小型嵌入式RTOS,具有小巧、速度快、系统开销小、使用方便等优点。
使用RTX51 Tiny能够提高系统的稳定性,优化程序的性能;而且它是为51单片机专门定制的,所以在51单片机上的运行效率比其它一些通用的RTOS性能也要好一些。
但是,由于RTX51 Tiny的相关资料和书籍比较少,大部分只是对程序自带帮助文件的简单翻译,很少进行深入探讨。
下面就RTX51 Tiny使用中经常遇到的一些问题进行探讨。
1 关于时间片的问题RTX51 Tiny使用的是无优先级时间片轮询法,每个任务使用相同大小的时间片,但是时间片是怎样确定的呢?RTX51 Tiny的配置参数(Conf_tny.a51文件中)中有INT_CLOCK和TIMESHARING两个参数。
这两个参数决定了每个任务使用时间片的大小:INT_CLOCK是时钟中断使用的周期数,也就是基本时间片;TIMESHARING是每个任务一次使用的时间片数目。
两者决定了一个任务一次使用的最大时间片。
如假设一个系统中INT_CLOCK设置为10000,即10ms,那么TIMESHARING=1时,一个任务使用的最大时间片是 10ms;TIMESHARING=2时,任务使用最大的时间片是20ms;TIMESHARING=5时,任务使用最大的时间片是50ms;当 TIMESHARING设置为0时,系统就不会进行自动任务切换了,这时需要用os_switch_task函数进行任务切换。
这部分功能是RTX51 Tiny 2.0中新增加的。
2 关于os_wait延时的问题os_wait 是RTX51 Tiny中的基本函数之一。
它的功能是将当前任务挂起来,等待一个启动信号(K_SIG)或超时信号(K_TMO)或周期信号(K_IVL)或者是它们之间的组合。
Keil_C51开发系统基本知识Keil C51开发系统基本知识1. 第一节系统概述Keil C51是美国Keil Software公司出品的51系列兼容单片机C 语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。
用过汇编语言后再使用C 来开发,体会更加深刻。
Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。
另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。
在开发大型软件时更能体现高级语言的优势。
下面详细介绍Keil C51开发系统各部分功能和使用。
2. 第二节 Keil C51单片机软件开发系统的整体结构C51工具包的整体结构,如图(1)所示,其中uVision与Ishell分别是C51 for Windows和for Dos的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。
开发人员可用IDE本身或其它编辑器编辑C或汇编源文件。
然后分别由C51及A51编译器编译生成目标文件(.OBJ)。
目标文件可由LIB51创建生成库文件,也可以与库文件一起经L51连接定位生成绝对目标文件(.ABS)。
ABS文件由OH51转换成标准的Hex文件,以供调试器dScope51或tScope51使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM中。
图(1) C51工具包整体结构图3. 第三节 Keil C51工具包的安装1. 1. C51 for Dos在Windows下直接运行软件包中DOS\C51DOS.exe然后选择安装目录即可。
完毕后欲使系统正常工作须进行以下操作(设C:\C51为安装目录):修改Autoexec.bat,加入path=C:\C51\BinSet C51LIB=C:\C51\LIBSet C51INC=C:\C51\INC然后运行Autoexec.bat2. 2. C51 for Windows的安装及注意事项:在Windows下运行软件包中WIN\Setup.exe,最好选择安装目录与C51 for Dos相同,这样设置最简单(设安装于C:\C51目录下)。
RTX51 Tiny介绍μVision是德国K eil公司开发的单片机IDE软件,最初主要用于8051系列单片机,RTX51是其自带的运行于8051系列单片机上的小型多任务实时操作系统,可用来设计具有实时性要求的多任务软件。
RTx51有2个版本:RTX51 Tiny和RTX51 Full。
RTX51 Tiny是RTX51 Full的子集。
RTX51 Tiny 自身仅占用900字节左右的程序存储空间,可以很容易地运行在没有外部扩展存储器的8051单片机系统上。
它完全集成在Keil C5l编译器中,具有运行速度快、对硬件要求不高、使用方便灵活等优点,因此越来越广泛地应用到单片机的软件开发中。
它可以在单个CPU上管理几个作业(任务),同时可以在没有扩展外部存储器的单片机系统上运行。
目前在8051系列单片机上使用多任务实时操作系统,RTX51 Tiny也就成为了首选。
////////////////////////////////////////////////////////////////////////////////////////////////////////////////// \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ RTX51 TINY允许同时“准并行”地执行多个任务:各个任务并非持续运行,而是在预先设定的时间片(time slice)内执行。
CPU执行时间被划分为若干时间片,RTX51 TINY为每个任务分配一个时间片,在一个时间片内允许执行某个任务,然后RTX51 TINY切换到另一个就绪的任务并允许它在其规定的时间片内执行。
由于各个时间片非常短,通常只有几ms,因此各个任务看起来似乎就是被同时执行了。
Keil C51使用详解第一章Keil C51开发系统基本知识 (6)第一节系统概述 (6)第二节Keil C51单片机软件开发系统的整体结构 (6)第三节Keil C51工具包的安装 (7)1. C51 for Dos 72. C51 for Windows的安装及注意事项: (7)第四节Keil C51工具包各部分功能及使用简介 (7)1. C51与A51. 72. L51和BL51. 83. DScope51,Tscope51及Monitor51. 84. Ishell及uVision. 9第二章Keil C51软件使用详解 (10)第一节Keil C51编译器的控制指令 (10)1. 源文件控制类 (10)2. 目标文件(Object)控制类: (10)3. 列表文件(listing)控制类: (10)第二节dScope51的使用 (11)1. dScope51 for Dos 112. dScope for Windows 12第三节Monitor51及其使用 (13)1. Monitor51对硬件的要求 (13)2. Mon51的使用 (13)3. MON51的配置 (13)4. 串口连接图: (13)5. MON51命令及使用 (14)第四节集成开发环境(IDE)的使用 (14)1. Ishell for Dos的使用 (14)2. uVision for windows的使用 (15)第三章Keil C51 vs 标准C.. 15第一节Keil C51扩展关键字 (15)第二节内存区域(Memory Areas): (16)1. Pragram Area: (16)2. Internal Data Memory: 163. External Data Memory. 164. Speciac Function Register Memory. 16第三节存储模式 (16)1. Small模式 (16)2. Compact模式 (17)3. large模式 (17)第四节存储类型声明 (17)第五节变量或数据类型 (17)第六节位变量与声明 (17)1. bit型变量 (17)2. 可位寻址区说明20H-2FH.. 18第七节Keil C51指针 (18)1. 一般指针 (18)2. 存储器指针 (18)3. 指针转换 (18)第八节Keil C51函数 (19)1. 中断函数声明: (19)2. 通用存储工作区 (19)3. 选通用存储工作区由using x声明,见上例。
rtx51 tiny原理RTX51 Tiny是一款基于RTX51内核的微型嵌入式操作系统。
本文将介绍RTX51 Tiny的原理及其应用。
一、RTX51 Tiny的原理RTX51 Tiny是由Keil公司开发的一款嵌入式实时操作系统。
它的设计目标是在51系列单片机上提供简单、灵活、高效的多任务管理和资源调度功能。
RTX51 Tiny使用了一种基于优先级的抢占式调度算法,能够实现多个任务之间的快速切换,从而提高系统的响应速度和并发处理能力。
RTX51 Tiny的核心是一个可重入的内核,它提供了任务管理、时间管理、资源管理和通信机制等基本功能。
任务管理器负责任务的创建、删除和切换,时间管理器实现了系统时钟的管理和定时器的功能,资源管理器用于管理共享资源的访问,通信机制则提供了任务间的消息传递和事件通知功能。
RTX51 Tiny的任务是用户定义的函数,可以是独立的任务或者中断服务函数。
每个任务都有一个优先级,优先级高的任务会优先执行。
当系统启动时,RTX51 Tiny会自动创建一个空闲任务,它的优先级最低,用于处理系统空闲时的任务。
RTX51 Tiny采用了一种事件驱动的方式进行任务调度。
当一个任务完成了它的工作或者等待某个事件发生时,它会主动让出CPU,将控制权交给调度器。
调度器会从就绪队列中选择优先级最高的任务执行,直到它完成了工作或者时间片用完。
RTX51 Tiny还提供了一些常用的服务函数,如延时函数、信号量函数、邮箱函数等,方便用户进行任务的同步与通信。
用户可以通过这些服务函数来实现任务间的协作和数据交换。
二、RTX51 Tiny的应用RTX51 Tiny广泛应用于各种嵌入式系统中,特别是对实时性要求较高的应用场景。
以下是一些常见的应用领域:1. 工业自动化:RTX51 Tiny可以用于控制系统中的任务调度和数据处理,实现复杂的自动控制算法和实时监控功能。
2. 智能家居:RTX51 Tiny可以用于家庭自动化系统中的任务管理和设备控制,实现智能家居的各种功能,如安防、照明和能源管理等。
/*
51单片机最简单的多任务操作系统
其实只有个任务调度切换,把说它是OS有点牵强,但它对于一些简单的开发应用来说,简单也许就是最好的.尽情的扩展它吧.别忘了把你的成果分享给大家.
这是一个最简单的OS,一切以运行效率为重,经测试,切换一次任务仅个机器周期,也就是在标准(工作于M晶振)上uS.
而为速度作出的牺牲是,为了给每个任务都分配一个私有堆栈,而占用了较多的内存.作为补偿,多任务更容易安排程序逻辑,从而可以节省一些用于控制的变量.
任务槽越多,占用内存越多,但任务也越好安排,以实际需求合理安排任务数目.一般来说,4个已足够.况且可以拿一个槽出来作为活动槽,换入换入一些临时任务.
task_load(函数名,任务槽号)
装载任务
os_start(任务槽号)
启动任务表.参数必须指向一个装载了的任务,否则系统会崩溃.
task_switch()
切换到其它任务
.编写任务函数注意事项:
KEIL C编译器是假定用户使用单任务环境,所以在变量的使用上都未对多任务进行处理,编写任务时应注意变量覆盖和代码重入问题.
1.覆盖:编译器为了节省内存,会给两个没用调用关系的函数分配同一内存地址作为变量空间.这在单任务下是很合理的,但对于多任务来说,两个进程会互相干扰对方.
解决的方法是:凡作用域内会跨越task_switch()的变量,都使用static前辍,保证其地址空间分配时的唯一性.
2.重入:重入并不是多任务下独有的问题,在单任务时,函数递归同样会导致重入,即,一个函数的不同实例(或者叫作"复本")之间的变量覆盖问题.
解决的方法是:使用reentrant函数后辍(例如:void function1() reentrant{...}).当然,根本的办法还是避免重入,因为重入会带来巨大的目标代码量,并极大降低运行效率.
3.额外提醒一句,在本例中,任务函数必须为一个死循环.退出函数会导致系统崩溃.
.任务函数如果是用汇编写成或内嵌汇编,切换任务时应该注意什么问题?
由于KEIL C编译器在处理函数调用时的约定规则为"子函数有可能修改任务寄存器",因此编译器在调用前已释放所有寄存器,子函数无需考虑保护任何寄存器.
这对于写惯汇编的人来说有点不习惯: 汇编习惯于在子程序中保护寄存器.
请注意一条原则:凡是需要跨越task_switch()的寄存器,全部需要保护(例如入栈).根本解决办法还是,不要让寄存器跨越任务切换函数task_switch()
事实上这里要补充一下,正如前所说,由于编译器存在变量地址覆盖优化,因此凡是非静态变量都不得跨越
task_switch().
任务函数的书写:
void 函数名(void){//任务函数必须定义为无参数型
while(1){//任务函数不得返回,必须为死循环
//....这里写任务处理代码
task_switch();//每执行一段时间任务,就释放CPU一下,让别的任务有机会运行.
}
}
任务装载:
task_load(函数名,任务槽号)
装载函数的动作可发生在任意时候,但通常是在main()中.要注意的是,在本例中由于没考虑任务换出,
所以在执行os_start()前必须将所有任务槽装满.之后可以随意更换任务槽中的任务.
启动任务调度器:
os_start(任务槽号)
调用该宏后,将从参数指定的任务槽开始执行任务调度.本例为每切换一次任务需额外开销个机器周期,用于迁移堆栈.
*/
#include<reg51.h>
/*============================以下为任务管理器代码============================*/
#define MAX_TASKS 3//任务槽个数.在本例中并未考虑任务换入换出,所以实际运行的任务有多少个,就定义多少个任务槽,不可多定义或少定义
//任务的栈指针
unsigned char idata task_sp[MAX_TASKS];
#define MAX_TASK_DEP 12 //最大栈深.最低不得少于个,保守值为.
//预估方法:以为基数,每增加一层函数调用,加字节.如果其间可能发生中断,则还要再加上中断需要的栈深.
//减小栈深的方法:1.尽量少嵌套子程序2.调子程序前关中断.
unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];//任务堆栈.
unsigned char task_id;//当前活动任务号
//任务切换函数(任务调度器)
void task_switch(){
task_sp[task_id] = SP;
if(++task_id == MAX_TASKS)
task_id = 0;
SP = task_sp[task_id];
}
//任务装入函数.将指定的函数(参数)装入指定(参数)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但
系统本身不会发生错误.
void task_load(unsigned int fn, unsigned char tid){
task_sp[tid] = task_stack[tid] + 1;
task_stack[tid][0] = (unsigned int)fn & 0xff;
task_stack[tid][1] = (unsigned int)fn >> 8;
}
//从指定的任务开始运行任务调度.调用该宏后,将永不返回.
#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}
/*============================以下为测试代码============================*/
unsigned char stra[3], strb[3];//用于内存块复制测试的数组.
//测试任务:复制内存块.每复制一个字节释放CPU一次
void task1(){
//每复制一个字节释放CPU一次,控制循环的变量必须考虑覆盖
static unsigned char i;//如果将这个变量前的static去掉,会发生什么事?
i = 0;
while(1){//任务必须为死循环,不得退出函数,否则系统会崩溃
stra[i] = strb[i];
if(++i == sizeof(stra))
i = 0;
//变量i在这里跨越了task_switch(),因此它必须定义为静态(static),否则它将会被其它进程修改,因为在另一个进程里也会用到该变量所占用的地址.
task_switch();//释放CPU一会儿,让其它进程有机会运行.如果去掉该行,则别的进程永远不会被调用到
}
}
//测试任务:复制内存块.每复制一个字节释放CPU一次.
void task2(){
//每复制一个字节释放CPU一次,控制循环的变量必须考虑覆盖
static unsigned char i;//如果将这个变量前的static去掉,将会发生覆盖问题.task1()和task2()会被编译器分配到同一个内存地址上,当两个任务同时运行时,i的值就会被两个任务改来改去
i = 0;
while(1){//任务必须为死循环,不得退出函数,否则系统会崩溃
stra[i] = strb[i];
if(++i == sizeof(stra))
i = 0;
//变量i在这里跨越了task_switch(),因此它必须定义为静态(static),否则它将会被其它进程修改,因为在另一个进程里也会用到该变量所占用的地址.
task_switch();//释放CPU一会儿,让其它进程有机会运行.如果去掉该行,则别的进程永远不会被调
用到
}
}
//测试任务:复制内存块.复制完所有字节后释放CPU一次.
void task3(){
//复制全部字节后才释放CPU,控制循环的变量不须考虑覆盖
unsigned char i;//这个变量前不需要加static,因为在它的作用域内并没有释放过CPU
while(1){//任务必须为死循环,不得退出函数,否则系统会崩溃
i = sizeof(stra);
do{
stra[i-1] = strb[i-1];
}while(--i);
//变量i在这里已完成它的使命,所以无需定义为静态.你甚至可以定义为寄存器型(regiter)
task_switch();//释放CPU一会儿,让其它进程有机会运行.如果去掉该行,则别的进程永远不会被调用到
}
}
void main(){
//在这个示例里并没有考虑任务的换入换出,所以任务槽必须全部用完,否则系统会崩溃.
//这里装载了三个任务,因此在定义MAX_TASKS时也必须定义为
task_load(task1, 0);//将task1函数装入号槽
task_load(task2, 1);//将task2函数装入号槽
task_load(task3, 2);//将task3函数装入号槽
os_start(0);//启动任务调度,并从号槽开始运行.参数改为,则首先运行号槽.
//调用该宏后,程序流将永不再返回main(),也就是说,该语句行之后的所有语句都不被执行到.
}。