二次函数零点分布
- 格式:ppt
- 大小:321.50 KB
- 文档页数:15
二次函数规律总结二次函数是高中数学中的重要内容,它的形式为y=ax²+bx+c,其中a、b、c 是常数,且a ≠ 0。
二次函数的图像一般为抛物线,其开口的方向由系数 a 的正负决定, a>0 时开口向上, a<0 时开口向下。
在学习和研究二次函数时,我们可以总结出一些常见的规律和性质。
一、二次函数的图像特点:1.抛物线的对称轴:二次函数图像的对称轴与y轴平行,对称轴的方程为x=-b/2a。
2. 顶点坐标:抛物线的顶点坐标为 (-b/2a, f(-b/2a)),其中f(x)=ax²+bx+c。
3.开口方向:抛物线的开口方向由系数a的正负决定,a>0时开口向上,a<0时开口向下。
4.最值:若a>0,则二次函数的最小值为f(-b/2a);若a<0,则二次函数的最大值为f(-b/2a)。
二、二次函数的零点和因式分解:1. 零点:二次函数的零点为函数图像与 x 轴相交的点,即 f(x)=0 的解。
二次函数的零点有两个解时,可以使用求根公式 x=(-b±√(b²-4ac))/(2a) 来求解。
2. 因式分解:对于一个二次函数f(x)=ax²+bx+c,若在 a、b、c 都为整数的情况下,可以对 f(x) 进行因式分解。
找到对应的两个整数 p 和 q,使得 a=pq,c=pq,则有 f(x)=(px+q)(qx+p)。
三、二次函数与平移、伸缩、翻转的关系:1. 平移:对于二次函数y=ax²+bx+c,若将 y=a(x-h)²+k,则得到的新函数 y' 的图像为原图像上下平移 h 个单位,左右平移 k 个单位。
2. 伸缩:对于二次函数y=ax²+bx+c,若将 y=a(x-p)²+q,则得到的新函数 y' 的图像相对于原图像在 x 轴方向上伸缩 p 倍,在 y 轴方向上伸缩 q 倍。
二次函数的零点及轴对称性二次函数是一个常见的代数函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。
在本文中,我们将探讨二次函数的零点及轴对称性。
一、二次函数的零点二次函数的零点,也称为函数的根或解,指的是函数值等于零的x 值。
要找到二次函数的零点,我们可以使用求根公式或图像法。
1. 求根公式通过求根公式可以得到二次函数的零点。
对于一般形式的二次函数f(x) = ax^2 + bx + c,其零点可以通过以下公式得到:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示取两个值,即可以得到二次函数的两个零点。
这个公式称为二次方程的根的公式,它的推导可以利用配方法或因式分解方法得到。
2. 图像法除了求根公式,我们还可以通过观察二次函数的图像来找到其零点。
二次函数的图像为一条抛物线,可以是开口向上或开口向下的形状。
当抛物线与x轴相交时,对应的x值即为函数的零点。
二、二次函数的轴对称性二次函数的轴对称性是指二次函数图像关于某一直线对称。
要确定二次函数的轴对称线,我们可以使用公式或观察法。
1. 公式法二次函数的轴对称线可以通过以下公式确定:x = -b / (2a)这个公式给出了二次函数的抛物线的对称轴的x坐标值。
例如,对于函数f(x) = ax^2 + bx + c,其对称轴的x坐标值为-x轴系数的一半。
2. 观察法除了公式法,我们还可以通过观察二次函数的图像来确定其轴对称线。
对于一般形式的二次函数f(x) = ax^2 + bx + c,如果a>0,则抛物线开口向上,轴对称线为抛物线的最低点所在的垂直线;如果a<0,则抛物线开口向下,轴对称线为抛物线的最高点所在的垂直线。
三、总结二次函数的零点是函数值等于零的x值,可以通过求根公式或观察图像来确定。
而二次函数的轴对称性指的是抛物线关于某一直线对称,可以通过公式或观察图像来确定轴对称线的位置。
解题探索数形结合巧运用,零点分布妙化解一浅谈对二次函数零点分布问题解题教学的研究张程燕(山东省济南中学,250001)一元二次函数是中学数学中最基本、最重要的 函数之一,也是高考考查的重要内容之一,是高考的 高频考点.高中数学教学中一元二次函数的零点分 布问题即初中数学教学中一元二次方程根的分布问 题,是二次函数部分的重点知识与内容,既是学生学 习的重点,也是学习的难点,因此对二次函数零点分 布问题的解题教学研究十分必要.目前,高中生对二 次函数零点分布问题的解题方法偏重于借助对二次 方程根的判别式和韦达定理的运用,能够解决的零 点分布问题有限且易出错,解题方法尚不够系统和 完善,针对这一学情,结合高中所学的零点存在定理 以及数形结合这一重要的数学思想方法,笔者将系 统地分析一元二次函数的零点分布问题,力求将解 题方法系统化、模式化、巧妙化,从而提高数学解题 教学的效率和质量,优化学生的思维品质,发展学生 的数学核心素养.1熟悉知识背景,理解方法本质学生对同一类数学题的解答与掌握,需要的不 仅仅是理解并掌握这类题目的解题方法与技巧,更 需要知晓题目所涉及的知识背景.从知识背景出发, 联系解题所需要的数学知识和方法,将知识与方法 有机融合在一起,构建起数学解题模型,既加深了学 生对数学知识的熟悉程度,也有助于学生理解数学 方法的本质,从而达到学以致用、举一反三的学习效 果,这也是数学解题教学的期望所在.本文所涉及的 数学知识与方法如下所述:1.函数零点存在定理:如果函数y =/(%)在区 间[a ,]上的图像是一^条连续不断的曲线,且有/ (a )/() <0,那么函数y =/()在区间(a ,)内至少 有一个零点,即存在c e (a ,),使得/(C) = 0,这个c 也就是方程/() =0的解[1].特别地,对于一次函数y = h +&(�)和二次 函数y = a / +心+c (a #0)而言,若/(幻在区间(a , 6)上满足零点存在定理,则在(a ,)上有且仅有一个零点.2.数形结合的思想方法——从四个方面将二次函数图像与代数不等式之间建立联系:①开口方向, ②对称轴,③判别式4,④特殊点函数值的符号.2探究典型例题,把握解题方法数学解题教学是数学教师根据教学需要选择合 适的试题,以学生的学情为起点,以自身的解题经 历、经验和研究为基础,通过师生间对话交互,促进 学生深度思考,优化学生思维品质的教学活动[2].本文选取四道典型例题,从思路分析、解答过程和 方法指导三个方面对二次函数零点分布问题进行解题 教学探究,全方位、多角度的对例题进行剖析,帮助学 生理解问题本质、建立解题模型以及掌握解题方法.例1如果方程尤2 + (^i -1)) +爪2 -2=0的两个 实根一个小于1,另一个大于1,求实数m 的取值范围.思路分析:(1)方程尤2 + (爪-1)尤+爪2-2=0根的分布问题0函数/(%) =%2 + (m - 1)% +m 2 -2的零点分布问题,完成方程的根与函数零点的转化;(2) 函数/() =% + (m -1)%+m 2 - 2 开口上,其与%轴的交点一个在1的左侧、一个在1的右 侧,易画出草图,熟悉题设,理清思路;(3)利用数形结合的思想方法,从四个方面二次函数图像与代数不等式之间建立联系:开口向 上是确定的;对称轴可以在1的左侧、右侧或者对称 轴为1;判别式4 = ( m - 1)2 - 4 ( m - 2 ) > 0;特殊 点函数值/(1) <0.解题过程1法一:数形结合由已知可列方程组:• 62•r 4 = (m -1)2 - A i m 1 - 2 ) >0, |/( 1) =1 + m — 1 + m 2 —2 <0.r 3m 2 + 2m -9 <0, m 2 + m - 2 <0.1 +2 槡 -1 +2 槡----;---< m <---------,33-2 < m < 1.%,^2满足0<% < 1<%2 <6,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4),其 与X 轴有两个交点%,2满足0<%<1<% <6,易 画出草图,熟悉题设,理清思路;(2)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:-2 < m < 1. m e ( - ,1)方法指导:因为/(X )开口向上,所以X —± ^ 时,/(X )— + (即/( -) >0,/( + ) >0),再有/(1) <0,则在区间(-^ ,1)和(1,+1)上都满足 零点存在定理,所以在两个区间都各有一个零点,从而满足题意.因此,判别式4 = (m -1)2 - 4(m 2 - 2 ) >0可省略不解,解答过程十分简单.解题过程1 :法一(简化):数形结合 由已知得:/(1) <0....1 + m - 1 + m 2 - 2 < 0. ... m 2 + m - 2 < 0..-2 < m < 1. .m e (-2,1).我们再来看一下第二种解题方法/昔助对二次 方程根的判别式和韦达定理的运用,来解决二次函 数零点分布问题.解题过程2:法二:韦达定理4 = (m -1)2 - 4(m 2 - 2 ) >0,xt - 1 )(%2 - 1) <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,%1%2 _ (xt +X 2 ) +1 <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,一2) -(1 一 m ) +1 <0.由已知,得{.{.{3m 2 + 2m -9<0,m 2 + m - <01 +2 槡 -1+2 槡...|-^^<m < ^3^,-2 < m < 1..- 2 < m < 1. .m e (-2,1).方法指导:韦达定理使用的前提是一元二次方 程的两根存在,即判别式4^0.因此在利用判别式 和韦达定理解决二次函数的零点分布问题时,判别 式4 = (m -1)2 - 4(m 2 - 2 ) >0不可以省略,必须 要求解.显然,在解决二次函数零点分布问题时,利 用韦达定理解题比利用数形结合解题计算量要大. 也就是说,数形结合方法解决零点分布问题更简易、 更巧妙、更通用.例2已知函数/(X ) =X 2 -2ax +4有两个零点由已知可列方程组:,/(0) =4>0, |/(1)=5-2a <0,...1/(6) =40 -12a >0.a >10a < —5 10 5 10.T <a <T .a E (T ’y ).方法指导:因为/(X )开口向上,且由图像可得, /(0) >0,(1) <0,(6) >0,则在区间(0,1)和(1,6)上 都满足零点存在定理,所以在区间(0,1 )和(1,)上各 有一个零点,满足题意“/(X )两个零点X i ,2且0 <X 1 < 1 <X 2 <6”,故而有关对称轴0 <a <6和判别式4 = (-2a )2 -4 x 1 x 4的不等式可省略.例3已知函数/(X ) =X 2 - 2aX +4有两个零点,且都大于1,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4 ),且 两个零点X 1,2都大于1,易画出草图,熟悉题设,理 清思路;()利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系解题过程:• 63•由已知可列方程组:/(1) =5 -2a >0, a >1,轴=—2a2x 1=a > 1a <52,,4 =4a 2 - 16 >0. La >2 或 a <-2.2 < a <52a g5)•方法指导:因为/()开口向上,所以/( - 〇〇) > 0,/( + 〇〇 ) > 0,且由图像可得/(1) > 0,但仅仅凭借 特殊点函数值/(1) >0并不能满足零点存在定理, 这就需要其它三个方面加以限制,即开口方向、对称轴-冬>1和4>0.La例4函数/(*) =a *2 -*-1在区间(0,1)内恰有一个零点,求实数a 的取值范围.思路分析:(1)函数开口方向不确定,过定点 (0,_1);()首项系数含参且在(0,1)内恰有一个零点, 满足条件的草图有很多,因此需要分类讨论,而分类 讨论的依据可以是首项系数的符号.亦或者,我们可 以利用前面的解题思路,按照端点函数值/(0)/( 1) 的符号来讨论;(3)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:分类讨论法一:按首项系数分类讨论(1) 若a =0,则/() = -*-1为一次函数,令/(*) =0,得 *= -1.此时/(*)只有*=-1这一个零点,在区间(0, 1)内无零点.(2)若 a >0,则/(*) = a *2 - * - 1 为一兀二次函数,开口向上,过定点(0, -1).由已知可列方程组:f (0) = ―1:0, .a >2.[/(1) =a - 2 >0.(3)若 a <0,则/(*) =a *2-*-1 为一兀二次 函数,开口向下,过定点(0, -1).由已知可列方程组:a <0,1 a <0,0 <^<1, ,、2a 或{ A =1 + 4a >0,4=1 +4a =0, |/(1) =a 一 2>0./(1) =a -2<0a <0,、a <2a <0,或a >a >2••.均无解.综上所述:的取值范围为(2,+ ^ )•方法指导:与例1例2、例3 —样,需要画出函 数草图,从开口方向、对称轴、判别式A 和特殊点函 数值的符号四个方面建立起函数图像与不等式之间 的关系.但由于函数首项系数含参,具有不确定性, 因此依据首项系数的符号进行分类讨论,进而求解 参数的范围.需要说明的是:在情形(2)中,二次函 数/(*) =a *2 -* - 1区间(0,1)上满足零点存在定 理,则在(0,1 )上有且仅有一个零点.法二:按特殊点函数值符号分类讨论:()当/(0)/(1) <0,由/(0) = -1,得/(1) =a-2 >0,即 a >2 时;此时满足零点存在定理,二次函数/(*) =a *2 -* -1在区间(0,)内必恰有一-零点.(2)当/(0)/(1) >0,由/(0) = -1,得/(1) =a-2 <0,即 a <2 时;由图可列方程组得:• 64•a<0,0 <2a<1,A-4a+1=0,/(0) = -1 <0,/(1) =a-2<0.a<0,a无解.、a<2.()当/(0)/() =0,由/(0) = -1,得/(1) -a -2=0,即a=2 时;v/(x) =ax2-x-1=22-x-1= (2+1) (-1),...令/(x) =(2x+1)(x- 1) =0.得 X1 =-+送(0,1),2 =1 送(0,1).■■■/(x) =ax2-X-1在区间(0,1)内没有零点..a=2不符合题意,舍去.综上所述:的取值范围为(2,+ 1X1 ).方法指导:1)当/(0)/() <0时,满足函数零 点存在定理,则对于二次函数而言在区间(0,1)有 且只有一个零点,满足题意;⑵当/(0)/(1) >0时,函数/(X)端点值同号,不满足零点存在定理,所以结合图像,还得添加其它 三个条件:开口方向、对称轴、判别式A;(3)当/(0)/(1)=0时,可直接求得a=2,此时 函数解析式确定,直接求出零点的值,再判断零点是 否在区间(0,1)内即可.通过对比按首项系数分类讨论和按特殊点函数 值符号(即是否满足零点存在定理)分类讨论两种 方法,我们发现:虽同为利用数形结合与分类讨论的 数学思想方法解题,但显然方法二比方法一简单许 多,再次验证了函数零点存在定理在零点分布问题 求解中的优势所在.3研究零点分布,归纳解题结论通过对典型例题的深度探究,我们发现:二次函 数的零点分布问题,可以从开口方向、对称轴、判别 式和特殊点函数值符号四个方面找寻二次函数图像 与代数不等式之间的关系,从而建立起数学解题模型.我们还发现,当特殊点的函数值符号异号时,即在某区间上函数满足零点存在定理时,那就只需要 列特殊点函数值符号的不等式即可,其它三个不等 式不用列也无需解;当不满足零点存在定理时,就需 要其它三个方面的不等式加以限制,此时不能省略.因此,从四个方面将二次函数图像与代数不等式之 间建立联系,利用数形结合解决二次函数的零点分 布问题时,要注意四个方面研究的顺序性,优先考虑 特殊点函数值的符号情况,若满足零点存在定理,则可简化解题步骤,巧妙解决二次函数的零点分布问 题.此外,对于需要分类讨论的二次函数零点存在问 题,以/( a)/( 6 )的符号为切入点展开分类讨论,显然思路比较清晰,便于求解.数形结合巧运用,零点分布妙化解.利用一个简单的数学知识——零点存在定理和一个常用的数学 思想方法——数形结合,把二次函数零点分布问题 的解题方法系统化、直观化和形象化,在题目的诸多变化中找到了数学解题的“不变性”,达到“以不变 应万变”的解题教学效果,从而能够促进学生的深 度思考,提升学生的解题能力,优化学生的数学思维 品质,发展学生的数学核心素养.(说明:本文中出现的函数图像,都是在假设存 在的前提下依据题意画出的草图,并不代表此函数 图像一定存在.尤其在涉及分类讨论求参数范围时,满足条件的函数图像是否真实存在取决于解题的结果是否有解.)参考文献:[1] 中学数学课程教材研究开发中心.普通中教科书数学必修第一册(2019年A版)[M].北 京:人民教育出版社,2019.[2] 安学保.讲在学生需要处,讲在思维深处——例谈高中数学解题教学中的问题驱动[J].中学数学教学参考,2019,(22) :54 -57.[3] 江春莲,胡玲.基于APOS理论和R M I原的二次函数图象平移教学实验研究[J].数学教育学报,2020,29(6) :2 -39.[4] 葛丽婷,旆梦媛,于国文.基于UbD理论单元教学设计——以平面解析几何为例[J].数学 教育学报,2020,29(5) :5 -31.• 65•。
二次函数的零点与值域分析二次函数是一种常见的数学函数形式,其一般形式可以表示为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
在本文中,我们将重点讨论二次函数的零点和值域分析。
一、二次函数的零点1. 零点定义:二次函数的零点即函数的解,它表示使得函数取值为零的x坐标点。
在解二次函数的零点时,我们需要使用求根公式: x = (-b ±√(b^2 - 4ac)) / 2a其中,±表示两个不同的解,分别对应函数与x轴的交点。
若b^2 - 4ac > 0,则有两个不同实数解;若b^2 - 4ac = 0,则有一个实数解;若b^2 - 4ac < 0,则无实数解。
2. 求解例子:假设有一个二次函数f(x) = 2x^2 + 5x - 3,我们来求解它的零点。
首先,根据公式我们得到:x = (-5 ±√(5^2 - 4 * 2 * -3)) / (2 * 2)简化后可得:x = (-5 ±√(25 + 24)) / 4x = (-5 ±√49) / 4因此,可以得到两个解:x1 = (-5 + 7) / 4 = 1/2x2 = (-5 - 7) / 4 = -3所以,该二次函数的零点为x = 1/2 和 x = -3。
二、二次函数的值域分析1. 值域定义:值域是函数所有可能结果的集合,对于二次函数而言,其值域的范围需要结合二次函数的开口方向来进行分析。
2. 开口向上:若a > 0,即二次函数开口向上,则值域为[ f(x') , +∞ ),其中f(x')为函数的最小值。
其中,最小值的求解方法为使用完全平方式将二次函数转化为顶点形式,其中顶点的坐标为 ( -b / (2a) , f(-b /(2a)) )。
例如,对于二次函数f(x) = x^2 + 2x - 3,我们可以将其转化为顶点形式来进行分析。
二次函数的零点问题二次函数是高中数学中重要的内容之一,通过研究二次函数的零点问题,我们可以深入理解二次函数的性质以及在实际问题中的应用。
本文将对二次函数的零点问题进行详细讨论。
一、二次函数的定义和性质二次函数的定义为:$y=ax^2+bx+c$,其中$a\neq 0$,$a, b, c$为常数,$x$为自变量,$y$为因变量。
二次函数的图像通常是抛物线的形状,开口方向取决于系数$a$的正负。
1. 零点的定义对于二次函数而言,零点即为函数图像与$x$轴相交的点。
也就是说,当函数的$y$值为0时,对应的$x$值即为零点。
2. 零点的判定为了求解二次函数的零点,我们需要先判定零点的存在性。
二次函数的零点存在与否与其判别式相关。
判别式$\Delta=b^2-4ac$表示二次函数的图像与$x$轴的交点个数。
- 当$\Delta>0$时,二次函数有两个不同的实数根,图像与$x$轴相交于两个点;- 当$\Delta=0$时,二次函数有一个实数根,图像与$x$轴相切于一个点;- 当$\Delta<0$时,二次函数没有实数根,图像与$x$轴没有交点。
二、求解二次函数的零点在判定二次函数零点的存在性后,接下来我们将介绍求解二次函数零点的方法。
1. 因式分解法当二次函数的判别式$\Delta>0$时,我们可以利用因式分解法求解零点。
以二次函数$y=ax^2+bx+c$为例,假设其两个零点分别为$x_1$和$x_2$,则可以将其表示为$(x-x_1)(x-x_2)$的形式。
通过对二次函数进行因式分解,我们可以将其转化为一元一次方程,并求得零点的值。
2. 公式法当二次函数的判别式$\Delta>0$时,我们可以使用求根公式来求解零点。
根据一元二次方程的求根公式:$x=\frac{-b\pm\sqrt{\Delta}}{2a}$,我们可以直接计算出二次函数的零点。
需要注意的是,当二次函数的判别式为0或小于0时,求根公式将无效,此时我们需要采用其他方法求解零点。
二次函数零点坐标公式
答:二次函数零点坐标公式是y=a(x-x1)(x-x2),二次函数的基本表示形式为y=ax²+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别。
函数的原点坐标都是(0,0),因此,二次函数的原点坐标也是(0,0),本题应该是二次函数的顶点坐标(一b/2a,4ac-b^2/4a)。
二次函数零点分布情况二次函数是代数学中重要的一种函数类型。
它的一般形式为y=ax^2+bx+c,其中a、b和c是实数常数,且a不为零。
二次函数的图像为开口向上或向下的抛物线,而与二次函数相关联的一个重要概念就是零点。
零点,也称为根或解,指的是使得函数取值为零的x值。
对于二次函数来说,求解零点的方法比较简单,有一条通用的公式可以使用。
给定一般形式的二次函数y=ax^2+bx+c,其零点可以通过解以下的二次方程得到:ax^2 + bx + c = 0二次方程的解可以通过求解下面的一元二次方程公式得到:x=(-b±√(b^2-4ac))/(2a)根据这个公式,我们可以得到一些关于二次函数零点分布情况的结论。
1.零点的数量:根据一元二次方程的解的公式,零点的数量取决于判别式的值,即(b^2-4ac)的正负性。
如果判别式大于零,方程有两个不同的实数根;如果判别式等于零,方程有两个相等的实数根;如果判别式小于零,方程没有实数根,但可能有两个复数根。
2.对称性:二次函数的零点也与其图像的对称性有关。
由于二次函数是关于抛物线的对称轴对称的,所以如果一个根为x,则对称轴上的距离为2x的点也是零点。
换句话说,如果(x1,0)是函数图像上的一个零点,那么对称轴上的点(-x1,0)也是零点。
3.零点位置与抛物线开口方向的关系:二次函数的开口方向由系数a的正负性决定。
如果a大于零,抛物线开口向上,此时函数图像的最低点就是零点的位置;如果a小于零,抛物线开口向下,此时函数图像的最高点就是零点的位置。
4.零点的分布情况:二次函数的零点的分布情况也与判别式的值有关。
如果判别式大于零,说明方程有两个不同的实数根,这意味着抛物线与x轴相交于两个不同的点;如果判别式等于零,说明方程有两个相等的实数根,这意味着抛物线与x轴相切于一个点;如果判别式小于零,说明方程没有实数根,这意味着抛物线与x轴没有交点。
在解析几何中,二次函数的零点也被称为方程与坐标轴的交点。