专题:二次函数零点分布
- 格式:ppt
- 大小:399.00 KB
- 文档页数:16
二次函数的零点知识点高一二次函数是高中数学中的重要内容之一,也是数学课程中较为复杂的内容之一。
其中,二次函数的零点是学习二次函数的基础知识点之一。
本文将从定义、性质、求解等多个方面来探讨二次函数的零点知识点。
定义:二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数,且a≠0。
这个函数的图像是一条抛物线,开口的方向取决于a的正负。
零点(或者称为根)是指函数的值为0的点,即f(x) = 0的解。
对于二次函数f(x) = ax^2 + bx + c来说,求解零点就是要找到使得f(x) = 0的x的值。
性质:1. 零点的个数:二次函数一般有零点,但它的零点个数取决于判别式Δ = b^2 - 4ac 的值。
当Δ > 0时,有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,没有实根,但存在两个虚根。
这个性质也反映了二次函数图像与x轴的相交情况。
2. 零点的对称性:对于二次函数f(x) = ax^2 + bx + c,它的零点x1和x2满足x1 + x2 = -b/a,即两个零点的和与二次项系数a的比值为负。
这个性质称为二次函数零点的对称性,也可通过抛物线的轴对称性来解释。
求解方法:1. 因式分解法:如果二次函数能够被因式分解,即能写成f(x) = a(x - r)(x - s)的形式,其中r和s为实数,那么它的零点就是x = r和x = s。
2. 公式法:二次函数的根可以通过求解一元二次方程得出。
根据根的公式x = (-b±√Δ)/(2a),其中±表示取加减两种解,Δ = b^2 - 4ac为判别式。
通过这个公式,可以求出二次函数的零点。
3. 完全平方法:对于一些特殊的二次函数,可以利用完全平方公式将其转化为平方的形式。
例如,f(x) = (x - 3)^2 - 4的零点可以通过x - 3 = ±√4转化为求解一次方程的问题。
二次函数零点分布情况二次函数是代数学中重要的一种函数类型。
它的一般形式为y=ax^2+bx+c,其中a、b和c是实数常数,且a不为零。
二次函数的图像为开口向上或向下的抛物线,而与二次函数相关联的一个重要概念就是零点。
零点,也称为根或解,指的是使得函数取值为零的x值。
对于二次函数来说,求解零点的方法比较简单,有一条通用的公式可以使用。
给定一般形式的二次函数y=ax^2+bx+c,其零点可以通过解以下的二次方程得到:ax^2 + bx + c = 0二次方程的解可以通过求解下面的一元二次方程公式得到:x=(-b±√(b^2-4ac))/(2a)根据这个公式,我们可以得到一些关于二次函数零点分布情况的结论。
1.零点的数量:根据一元二次方程的解的公式,零点的数量取决于判别式的值,即(b^2-4ac)的正负性。
如果判别式大于零,方程有两个不同的实数根;如果判别式等于零,方程有两个相等的实数根;如果判别式小于零,方程没有实数根,但可能有两个复数根。
2.对称性:二次函数的零点也与其图像的对称性有关。
由于二次函数是关于抛物线的对称轴对称的,所以如果一个根为x,则对称轴上的距离为2x的点也是零点。
换句话说,如果(x1,0)是函数图像上的一个零点,那么对称轴上的点(-x1,0)也是零点。
3.零点位置与抛物线开口方向的关系:二次函数的开口方向由系数a的正负性决定。
如果a大于零,抛物线开口向上,此时函数图像的最低点就是零点的位置;如果a小于零,抛物线开口向下,此时函数图像的最高点就是零点的位置。
4.零点的分布情况:二次函数的零点的分布情况也与判别式的值有关。
如果判别式大于零,说明方程有两个不同的实数根,这意味着抛物线与x轴相交于两个不同的点;如果判别式等于零,说明方程有两个相等的实数根,这意味着抛物线与x轴相切于一个点;如果判别式小于零,说明方程没有实数根,这意味着抛物线与x轴没有交点。
在解析几何中,二次函数的零点也被称为方程与坐标轴的交点。
一元二次函数零点分布(二次方程根的分布) 教学目标学会如何通过研究函数的图像,确定二次函数在给定区间上的零点分布。
教学重点根据函数的图像确定二次函数在给定区间上的零点分布。
教学难点体会影响二次函数在给定区间上的零点分布的要素。
教学过程一、 探究二次函数零点分布的要素1、 回想:方程0)3(2=+-+a x a x 有两个正根,两个负根,一个正根一个负根。
2、 思考:函数2)3()(2+-+=x a x x f 有两个零点,21,x x ,且()+∞∈,0,21x x 。
若将条件改成()+∞∈,1-,21x x ,又该满足什么条件。
3.探究:二次函数零点分布的要素二、例题讲解例1 函数a x a x x f +-+=)3()(2有两个零点21,x x ,且()+∞∈,0,21x x ,求a 范围【练习1】例1中条件改成()0,,21∞-∈x x例2函数a x a x x f +-+=)3()(2有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围【总结】一元二次函数两个零点均在一个区间,如()()),(,,,,-b a m m +∞∞。
这类问题要考虑哪些因素。
【练习2】12)(2++-=ax x x f 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围 【变式1】练习2中条件改成()1,1-,21∈x x 【变式2】12)(2++=ax ax x f 的两个零点()1,1-,21∈x x ,求a 范围例3函数a x a x x f +-+=)3()(2有两个零点21,x x ,且0,021><x x ,求a 范围【总结】一元二次函数两个零点在不同区间,这一类问题需要考虑哪些因素,为什么?【练习3】例3中条件改成1,121><x x【变式1】12-)(2++=ax x x f 的两个零点有1,121><x x ,求a 范围。
二次函数的零点公式二次函数是高中数学中的一个重要概念,它在数学和其他科学领域中有着广泛的应用。
零点公式是求解二次函数零点的一种方法,也是解二次方程的基本工具。
本文将介绍二次函数的零点公式及其应用。
二次函数是一个一般形式为y = ax^2 + bx + c的函数,其中a、b、c为实数,且a不等于0。
根据一元二次方程的定义,我们可以将二次函数表示成方程ax^2 + bx + c = 0的形式。
为了求出二次方程的解,我们可以使用零点公式,也称为一元二次方程的求根公式。
零点公式表达为x = (-b ±√(b^2 - 4ac)) / 2a。
其中,±表示正负两个解,√表示求平方根。
这个公式是通过配方法和求解一元二次方程得到的。
通过将二次函数设置为0并运用零点公式,我们可以有效地求出二次函数的零点。
在使用零点公式时,我们需要注意以下几点:1. 判别式:方程的判别式是针对二次方程的(b^2 - 4ac)部分的值进行判断。
当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根,但存在两个共轭复数根。
2. 实根和虚根:根据判别式的值,我们可以确定方程的解的性质。
如果判别式大于0,方程有两个不相等的实根;如果判别式等于0,方程有两个相等的实根;如果判别式小于0,方程没有实根,但存在两个共轭复数根。
通过以上的阐述,我们了解了二次函数的零点公式及其相关概念。
接下来,我们将介绍一些示例问题,以展示零点公式的实际应用。
示例一:解方程2x^2 + 5x - 3 = 0。
根据零点公式,我们有x = (-5 ± √(5^2 - 4*2*(-3))) / (2*2)。
计算得到x = (-5 ± √(25 + 24)) / 4。
化简得到x = (-5 ± √49) / 4。
进一步计算可得到x = (-5 ± 7) / 4。
二次函数在给定区间上的零点分布一学习目标:学会如何通过研究函数的图象确定二次函数在给定区间上的零点分布.二 知识点精讲一元二次方程根的分布是二次函数中的重要内容。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。
函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0若y =f (x )与y =g (x )有交点(0x ,0y )⇔()f x =()g x 有解0x 。
下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。
1.一元二次方程根的基本分布——零分布所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧.设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤.1方程02=++c bx ax (0≠a )有两个正根:01>x ,02>x ⇔212124000b ac b x x a c x x a ⎧∆=-≥⎪⎪⎪+=->⎨⎪⎪=>⎪⎩推论:01>x ,02>x⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆00)0(0042b c f a ac b 上述推论结合二次函数图象不难得到.2方程02=++c bx ax (0≠a )有两个负根:01<x ,02<x ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆000421212a c x x a b x x ac b 推论:01<x ,02<x⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆0)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆00)0(0042b c f a ac b 由二次函数图象易知它的正确性.3方程02=++c bx ax (0≠a )有两个异号根:210x x <<⇔0<ac .4 ○1方程02=++c bx ax (0≠a )有一个零根,一个正根:01=x ,02>x ⇔0=c 且0<ab ; (2)方程02=++c bx ax (0≠a )有一个零根,一个负根:01<x ,02=x ⇔0=c 且0>a b .2.一元二次方程的非零分布——k 分布设一元二次方程02=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤。
二次函数零点分布 SANY GROUP system office room 【SANYUA16H-一元二次函数零点分布(二次方程根的分布) 教学目标学会如何通过研究函数的图像,确定二次函数在给定区间上的零点分布。
教学重点根据函数的图像确定二次函数在给定区间上的零点分布。
教学难点体会影响二次函数在给定区间上的零点分布的要素。
教学过程一、 探究二次函数零点分布的要素1、回想:方程0)3(2=+-+a x a x 有两个正根,两个负根,一个正根一个负根。
2、思考:函数2)3()(2+-+=x a x x f 有两个零点,21,x x ,且()+∞∈,0,21x x 。
若将条件改成()+∞∈,1-,21x x ,又该满足什么条件。
3.探究:二次函数零点分布的要素二、例题讲解例1函数a x a x x f +-+=)3()(2有两个零点21,x x ,且()+∞∈,0,21x x ,求a范围 【练习1】例1中条件改成()0,,21∞-∈x x例2函数a x a x x f +-+=)3()(2有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围【总结】一元二次函数两个零点均在一个区间,如()()),(,,,,-b a m m +∞∞ 。
这类问题要考虑哪些因素。
【练习2】12)(2++-=ax x x f 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a范围【变式1】练习2中条件改成()1,1-,21∈x x 【变式2】12)(2++=ax ax x f 的两个零点()1,1-,21∈x x ,求a 范围例3函数a x a x x f +-+=)3()(2有两个零点21,x x ,且0,021><x x ,求a范围【总结】一元二次函数两个零点在不同区间,这一类问题需要考虑哪些因素,为什么?【练习3】例3中条件改成1,121><x x【变式1】12-)(2++=ax x x f 的两个零点有1,121><x x ,求a 范围。