二次函数零点的分布
- 格式:ppt
- 大小:1.46 MB
- 文档页数:25
二次函数零点范围问题二次函数是一种常见的数学函数,其形式为f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于0。
在二次函数中,我们经常遇到一个重要的问题,即求解二次函数的零点范围。
本文将详细介绍如何解决这个问题。
## 1. 什么是二次函数的零点?我们需要明确什么是二次函数的零点。
在数学上,二次函数的零点指的是使得函数值等于0的x值。
如果存在一个x值使得f(x) = 0,则称该x值为二次函数的零点。
## 2. 如何求解二次函数的零点?要求解二次函数的零点,我们可以使用一些数学方法。
其中最常用且简单的方法是使用求根公式或配方法。
### 2.1 求根公式对于一般形式的二次方程ax^2 + bx + c = 0,我们可以使用求根公式来求解其零点。
求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中±表示两个解,分别对应正负号。
### 2.2 配方法如果无法直接使用求根公式来求解二次方程,则可以尝试使用配方法。
配方法的基本思想是通过将二次方程转化为一个完全平方的形式来求解。
具体步骤如下:1. 将二次方程ax^2 + bx + c = 0左右两边同时减去c,得到ax^2 + bx = -c。
2. 将左边的二次项与常数项之间的系数除以a,得到x^2 + (b/a)x = -c/a。
3. 在等式两边同时加上(b/2a)^2,即(b/2a)^2 + x^2 + (b/a)x = (b/2a)^2 - c/a。
4. 将左边的三项构成一个完全平方,即(x + b/2a)^2 = (b^2 - 4ac) / (4a^2)。
5. 对等式两边开根号,并解出x。
## 3. 如何确定二次函数零点的范围?在求解二次函数的零点时,我们通常需要确定零点的范围。
这可以通过判断二次函数开口方向和判别式来实现。
### 3.1 判断二次函数开口方向对于一般形式的二次函数f(x) = ax^2 + bx + c,我们可以通过判断其系数a的正负来确定其开口方向。
二次函数规律总结二次函数是高中数学中的重要内容,它的形式为y=ax²+bx+c,其中a、b、c 是常数,且a ≠ 0。
二次函数的图像一般为抛物线,其开口的方向由系数 a 的正负决定, a>0 时开口向上, a<0 时开口向下。
在学习和研究二次函数时,我们可以总结出一些常见的规律和性质。
一、二次函数的图像特点:1.抛物线的对称轴:二次函数图像的对称轴与y轴平行,对称轴的方程为x=-b/2a。
2. 顶点坐标:抛物线的顶点坐标为 (-b/2a, f(-b/2a)),其中f(x)=ax²+bx+c。
3.开口方向:抛物线的开口方向由系数a的正负决定,a>0时开口向上,a<0时开口向下。
4.最值:若a>0,则二次函数的最小值为f(-b/2a);若a<0,则二次函数的最大值为f(-b/2a)。
二、二次函数的零点和因式分解:1. 零点:二次函数的零点为函数图像与 x 轴相交的点,即 f(x)=0 的解。
二次函数的零点有两个解时,可以使用求根公式 x=(-b±√(b²-4ac))/(2a) 来求解。
2. 因式分解:对于一个二次函数f(x)=ax²+bx+c,若在 a、b、c 都为整数的情况下,可以对 f(x) 进行因式分解。
找到对应的两个整数 p 和 q,使得 a=pq,c=pq,则有 f(x)=(px+q)(qx+p)。
三、二次函数与平移、伸缩、翻转的关系:1. 平移:对于二次函数y=ax²+bx+c,若将 y=a(x-h)²+k,则得到的新函数 y' 的图像为原图像上下平移 h 个单位,左右平移 k 个单位。
2. 伸缩:对于二次函数y=ax²+bx+c,若将 y=a(x-p)²+q,则得到的新函数 y' 的图像相对于原图像在 x 轴方向上伸缩 p 倍,在 y 轴方向上伸缩 q 倍。
二次函数的零点知识点高一二次函数是高中数学中的重要内容之一,也是数学课程中较为复杂的内容之一。
其中,二次函数的零点是学习二次函数的基础知识点之一。
本文将从定义、性质、求解等多个方面来探讨二次函数的零点知识点。
定义:二次函数是一种形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数,且a≠0。
这个函数的图像是一条抛物线,开口的方向取决于a的正负。
零点(或者称为根)是指函数的值为0的点,即f(x) = 0的解。
对于二次函数f(x) = ax^2 + bx + c来说,求解零点就是要找到使得f(x) = 0的x的值。
性质:1. 零点的个数:二次函数一般有零点,但它的零点个数取决于判别式Δ = b^2 - 4ac 的值。
当Δ > 0时,有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,没有实根,但存在两个虚根。
这个性质也反映了二次函数图像与x轴的相交情况。
2. 零点的对称性:对于二次函数f(x) = ax^2 + bx + c,它的零点x1和x2满足x1 + x2 = -b/a,即两个零点的和与二次项系数a的比值为负。
这个性质称为二次函数零点的对称性,也可通过抛物线的轴对称性来解释。
求解方法:1. 因式分解法:如果二次函数能够被因式分解,即能写成f(x) = a(x - r)(x - s)的形式,其中r和s为实数,那么它的零点就是x = r和x = s。
2. 公式法:二次函数的根可以通过求解一元二次方程得出。
根据根的公式x = (-b±√Δ)/(2a),其中±表示取加减两种解,Δ = b^2 - 4ac为判别式。
通过这个公式,可以求出二次函数的零点。
3. 完全平方法:对于一些特殊的二次函数,可以利用完全平方公式将其转化为平方的形式。
例如,f(x) = (x - 3)^2 - 4的零点可以通过x - 3 = ±√4转化为求解一次方程的问题。
二次函数零点分布情况二次函数是一种常见的数学函数形式,可以用来描述很多自然现象和数学问题。
在二次函数中,零点即为方程 $ax^2+bx+c=0$ 的解,其中 $a, b, c$ 是常数,$a\neq0$。
在本文中,我们将探讨二次函数的零点分布情况,包括有两个实根、有一个实根和无实根的情况。
首先,我们来讨论二次函数有两个实根的情况。
对于这种情况,方程$ax^2+bx+c=0$ 的判别式 $D=b^2-4ac$ 必须大于零,才能有两个不相等的实根。
当 $D>0$ 时,方程有两个实根,且它们的值可以通过求根公式$x=\frac{-b\pm\sqrt{D}}{2a}$ 来求得。
此时,我们可以绘制二次函数的图像,发现它与 $x$ 轴交于两个不同的点,这两个点就是函数的零点。
其次,我们来讨论二次函数有一个实根的情况。
对于这种情况,方程$ax^2+bx+c=0$ 的判别式 $D=b^2-4ac$ 必须等于零,才能有一个实根。
当 $D=0$ 时,方程有一个实根,它的值可以通过求根公式 $x=\frac{-b}{2a}$ 来求得。
此时,我们可以绘制二次函数的图像,发现它与$x$ 轴相切于一个点,这个点就是函数的零点。
最后,我们来讨论二次函数无实根的情况。
对于这种情况,方程$ax^2+bx+c=0$ 的判别式 $D=b^2-4ac$ 必须小于零,才能无实根。
当$D<0$ 时,方程无实根,此时我们无法在实数范围内找到满足方程的解。
对于这种情况,二次函数的图像也不会与 $x$ 轴相交,即没有零点。
通过以上讨论,我们可以得出以下结论:对于二次函数 $ax^2+bx+c$,它的零点分布情况依赖于方程的判别式 $D=b^2-4ac$ 的值。
如果 $D>0$,则函数有两个实根,若 $D=0$,则函数有一个实根,若 $D<0$,则函数无实根。
需要注意的是,判别式的正负性实际上也与二次函数的开口方向有关。
当 $a>0$ 时,二次函数开口向上,有两个零点的情况会出现在开口向上的抛物线中;当 $a<0$ 时,二次函数开口向下,有两个零点的情况会出现在开口向下的抛物线中。
解题探索数形结合巧运用,零点分布妙化解一浅谈对二次函数零点分布问题解题教学的研究张程燕(山东省济南中学,250001)一元二次函数是中学数学中最基本、最重要的 函数之一,也是高考考查的重要内容之一,是高考的 高频考点.高中数学教学中一元二次函数的零点分 布问题即初中数学教学中一元二次方程根的分布问 题,是二次函数部分的重点知识与内容,既是学生学 习的重点,也是学习的难点,因此对二次函数零点分 布问题的解题教学研究十分必要.目前,高中生对二 次函数零点分布问题的解题方法偏重于借助对二次 方程根的判别式和韦达定理的运用,能够解决的零 点分布问题有限且易出错,解题方法尚不够系统和 完善,针对这一学情,结合高中所学的零点存在定理 以及数形结合这一重要的数学思想方法,笔者将系 统地分析一元二次函数的零点分布问题,力求将解 题方法系统化、模式化、巧妙化,从而提高数学解题 教学的效率和质量,优化学生的思维品质,发展学生 的数学核心素养.1熟悉知识背景,理解方法本质学生对同一类数学题的解答与掌握,需要的不 仅仅是理解并掌握这类题目的解题方法与技巧,更 需要知晓题目所涉及的知识背景.从知识背景出发, 联系解题所需要的数学知识和方法,将知识与方法 有机融合在一起,构建起数学解题模型,既加深了学 生对数学知识的熟悉程度,也有助于学生理解数学 方法的本质,从而达到学以致用、举一反三的学习效 果,这也是数学解题教学的期望所在.本文所涉及的 数学知识与方法如下所述:1.函数零点存在定理:如果函数y =/(%)在区 间[a ,]上的图像是一^条连续不断的曲线,且有/ (a )/() <0,那么函数y =/()在区间(a ,)内至少 有一个零点,即存在c e (a ,),使得/(C) = 0,这个c 也就是方程/() =0的解[1].特别地,对于一次函数y = h +&(�)和二次 函数y = a / +心+c (a #0)而言,若/(幻在区间(a , 6)上满足零点存在定理,则在(a ,)上有且仅有一个零点.2.数形结合的思想方法——从四个方面将二次函数图像与代数不等式之间建立联系:①开口方向, ②对称轴,③判别式4,④特殊点函数值的符号.2探究典型例题,把握解题方法数学解题教学是数学教师根据教学需要选择合 适的试题,以学生的学情为起点,以自身的解题经 历、经验和研究为基础,通过师生间对话交互,促进 学生深度思考,优化学生思维品质的教学活动[2].本文选取四道典型例题,从思路分析、解答过程和 方法指导三个方面对二次函数零点分布问题进行解题 教学探究,全方位、多角度的对例题进行剖析,帮助学 生理解问题本质、建立解题模型以及掌握解题方法.例1如果方程尤2 + (^i -1)) +爪2 -2=0的两个 实根一个小于1,另一个大于1,求实数m 的取值范围.思路分析:(1)方程尤2 + (爪-1)尤+爪2-2=0根的分布问题0函数/(%) =%2 + (m - 1)% +m 2 -2的零点分布问题,完成方程的根与函数零点的转化;(2) 函数/() =% + (m -1)%+m 2 - 2 开口上,其与%轴的交点一个在1的左侧、一个在1的右 侧,易画出草图,熟悉题设,理清思路;(3)利用数形结合的思想方法,从四个方面二次函数图像与代数不等式之间建立联系:开口向 上是确定的;对称轴可以在1的左侧、右侧或者对称 轴为1;判别式4 = ( m - 1)2 - 4 ( m - 2 ) > 0;特殊 点函数值/(1) <0.解题过程1法一:数形结合由已知可列方程组:• 62•r 4 = (m -1)2 - A i m 1 - 2 ) >0, |/( 1) =1 + m — 1 + m 2 —2 <0.r 3m 2 + 2m -9 <0, m 2 + m - 2 <0.1 +2 槡 -1 +2 槡----;---< m <---------,33-2 < m < 1.%,^2满足0<% < 1<%2 <6,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4),其 与X 轴有两个交点%,2满足0<%<1<% <6,易 画出草图,熟悉题设,理清思路;(2)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:-2 < m < 1. m e ( - ,1)方法指导:因为/(X )开口向上,所以X —± ^ 时,/(X )— + (即/( -) >0,/( + ) >0),再有/(1) <0,则在区间(-^ ,1)和(1,+1)上都满足 零点存在定理,所以在两个区间都各有一个零点,从而满足题意.因此,判别式4 = (m -1)2 - 4(m 2 - 2 ) >0可省略不解,解答过程十分简单.解题过程1 :法一(简化):数形结合 由已知得:/(1) <0....1 + m - 1 + m 2 - 2 < 0. ... m 2 + m - 2 < 0..-2 < m < 1. .m e (-2,1).我们再来看一下第二种解题方法/昔助对二次 方程根的判别式和韦达定理的运用,来解决二次函 数零点分布问题.解题过程2:法二:韦达定理4 = (m -1)2 - 4(m 2 - 2 ) >0,xt - 1 )(%2 - 1) <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,%1%2 _ (xt +X 2 ) +1 <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,一2) -(1 一 m ) +1 <0.由已知,得{.{.{3m 2 + 2m -9<0,m 2 + m - <01 +2 槡 -1+2 槡...|-^^<m < ^3^,-2 < m < 1..- 2 < m < 1. .m e (-2,1).方法指导:韦达定理使用的前提是一元二次方 程的两根存在,即判别式4^0.因此在利用判别式 和韦达定理解决二次函数的零点分布问题时,判别 式4 = (m -1)2 - 4(m 2 - 2 ) >0不可以省略,必须 要求解.显然,在解决二次函数零点分布问题时,利 用韦达定理解题比利用数形结合解题计算量要大. 也就是说,数形结合方法解决零点分布问题更简易、 更巧妙、更通用.例2已知函数/(X ) =X 2 -2ax +4有两个零点由已知可列方程组:,/(0) =4>0, |/(1)=5-2a <0,...1/(6) =40 -12a >0.a >10a < —5 10 5 10.T <a <T .a E (T ’y ).方法指导:因为/(X )开口向上,且由图像可得, /(0) >0,(1) <0,(6) >0,则在区间(0,1)和(1,6)上 都满足零点存在定理,所以在区间(0,1 )和(1,)上各 有一个零点,满足题意“/(X )两个零点X i ,2且0 <X 1 < 1 <X 2 <6”,故而有关对称轴0 <a <6和判别式4 = (-2a )2 -4 x 1 x 4的不等式可省略.例3已知函数/(X ) =X 2 - 2aX +4有两个零点,且都大于1,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4 ),且 两个零点X 1,2都大于1,易画出草图,熟悉题设,理 清思路;()利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系解题过程:• 63•由已知可列方程组:/(1) =5 -2a >0, a >1,轴=—2a2x 1=a > 1a <52,,4 =4a 2 - 16 >0. La >2 或 a <-2.2 < a <52a g5)•方法指导:因为/()开口向上,所以/( - 〇〇) > 0,/( + 〇〇 ) > 0,且由图像可得/(1) > 0,但仅仅凭借 特殊点函数值/(1) >0并不能满足零点存在定理, 这就需要其它三个方面加以限制,即开口方向、对称轴-冬>1和4>0.La例4函数/(*) =a *2 -*-1在区间(0,1)内恰有一个零点,求实数a 的取值范围.思路分析:(1)函数开口方向不确定,过定点 (0,_1);()首项系数含参且在(0,1)内恰有一个零点, 满足条件的草图有很多,因此需要分类讨论,而分类 讨论的依据可以是首项系数的符号.亦或者,我们可 以利用前面的解题思路,按照端点函数值/(0)/( 1) 的符号来讨论;(3)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:分类讨论法一:按首项系数分类讨论(1) 若a =0,则/() = -*-1为一次函数,令/(*) =0,得 *= -1.此时/(*)只有*=-1这一个零点,在区间(0, 1)内无零点.(2)若 a >0,则/(*) = a *2 - * - 1 为一兀二次函数,开口向上,过定点(0, -1).由已知可列方程组:f (0) = ―1:0, .a >2.[/(1) =a - 2 >0.(3)若 a <0,则/(*) =a *2-*-1 为一兀二次 函数,开口向下,过定点(0, -1).由已知可列方程组:a <0,1 a <0,0 <^<1, ,、2a 或{ A =1 + 4a >0,4=1 +4a =0, |/(1) =a 一 2>0./(1) =a -2<0a <0,、a <2a <0,或a >a >2••.均无解.综上所述:的取值范围为(2,+ ^ )•方法指导:与例1例2、例3 —样,需要画出函 数草图,从开口方向、对称轴、判别式A 和特殊点函 数值的符号四个方面建立起函数图像与不等式之间 的关系.但由于函数首项系数含参,具有不确定性, 因此依据首项系数的符号进行分类讨论,进而求解 参数的范围.需要说明的是:在情形(2)中,二次函 数/(*) =a *2 -* - 1区间(0,1)上满足零点存在定 理,则在(0,1 )上有且仅有一个零点.法二:按特殊点函数值符号分类讨论:()当/(0)/(1) <0,由/(0) = -1,得/(1) =a-2 >0,即 a >2 时;此时满足零点存在定理,二次函数/(*) =a *2 -* -1在区间(0,)内必恰有一-零点.(2)当/(0)/(1) >0,由/(0) = -1,得/(1) =a-2 <0,即 a <2 时;由图可列方程组得:• 64•a<0,0 <2a<1,A-4a+1=0,/(0) = -1 <0,/(1) =a-2<0.a<0,a无解.、a<2.()当/(0)/() =0,由/(0) = -1,得/(1) -a -2=0,即a=2 时;v/(x) =ax2-x-1=22-x-1= (2+1) (-1),...令/(x) =(2x+1)(x- 1) =0.得 X1 =-+送(0,1),2 =1 送(0,1).■■■/(x) =ax2-X-1在区间(0,1)内没有零点..a=2不符合题意,舍去.综上所述:的取值范围为(2,+ 1X1 ).方法指导:1)当/(0)/() <0时,满足函数零 点存在定理,则对于二次函数而言在区间(0,1)有 且只有一个零点,满足题意;⑵当/(0)/(1) >0时,函数/(X)端点值同号,不满足零点存在定理,所以结合图像,还得添加其它 三个条件:开口方向、对称轴、判别式A;(3)当/(0)/(1)=0时,可直接求得a=2,此时 函数解析式确定,直接求出零点的值,再判断零点是 否在区间(0,1)内即可.通过对比按首项系数分类讨论和按特殊点函数 值符号(即是否满足零点存在定理)分类讨论两种 方法,我们发现:虽同为利用数形结合与分类讨论的 数学思想方法解题,但显然方法二比方法一简单许 多,再次验证了函数零点存在定理在零点分布问题 求解中的优势所在.3研究零点分布,归纳解题结论通过对典型例题的深度探究,我们发现:二次函 数的零点分布问题,可以从开口方向、对称轴、判别 式和特殊点函数值符号四个方面找寻二次函数图像 与代数不等式之间的关系,从而建立起数学解题模型.我们还发现,当特殊点的函数值符号异号时,即在某区间上函数满足零点存在定理时,那就只需要 列特殊点函数值符号的不等式即可,其它三个不等 式不用列也无需解;当不满足零点存在定理时,就需 要其它三个方面的不等式加以限制,此时不能省略.因此,从四个方面将二次函数图像与代数不等式之 间建立联系,利用数形结合解决二次函数的零点分 布问题时,要注意四个方面研究的顺序性,优先考虑 特殊点函数值的符号情况,若满足零点存在定理,则可简化解题步骤,巧妙解决二次函数的零点分布问 题.此外,对于需要分类讨论的二次函数零点存在问 题,以/( a)/( 6 )的符号为切入点展开分类讨论,显然思路比较清晰,便于求解.数形结合巧运用,零点分布妙化解.利用一个简单的数学知识——零点存在定理和一个常用的数学 思想方法——数形结合,把二次函数零点分布问题 的解题方法系统化、直观化和形象化,在题目的诸多变化中找到了数学解题的“不变性”,达到“以不变 应万变”的解题教学效果,从而能够促进学生的深 度思考,提升学生的解题能力,优化学生的数学思维 品质,发展学生的数学核心素养.(说明:本文中出现的函数图像,都是在假设存 在的前提下依据题意画出的草图,并不代表此函数 图像一定存在.尤其在涉及分类讨论求参数范围时,满足条件的函数图像是否真实存在取决于解题的结果是否有解.)参考文献:[1] 中学数学课程教材研究开发中心.普通中教科书数学必修第一册(2019年A版)[M].北 京:人民教育出版社,2019.[2] 安学保.讲在学生需要处,讲在思维深处——例谈高中数学解题教学中的问题驱动[J].中学数学教学参考,2019,(22) :54 -57.[3] 江春莲,胡玲.基于APOS理论和R M I原的二次函数图象平移教学实验研究[J].数学教育学报,2020,29(6) :2 -39.[4] 葛丽婷,旆梦媛,于国文.基于UbD理论单元教学设计——以平面解析几何为例[J].数学 教育学报,2020,29(5) :5 -31.• 65•。
二次函数零点分布情况二次函数是代数学中重要的一种函数类型。
它的一般形式为y=ax^2+bx+c,其中a、b和c是实数常数,且a不为零。
二次函数的图像为开口向上或向下的抛物线,而与二次函数相关联的一个重要概念就是零点。
零点,也称为根或解,指的是使得函数取值为零的x值。
对于二次函数来说,求解零点的方法比较简单,有一条通用的公式可以使用。
给定一般形式的二次函数y=ax^2+bx+c,其零点可以通过解以下的二次方程得到:ax^2 + bx + c = 0二次方程的解可以通过求解下面的一元二次方程公式得到:x=(-b±√(b^2-4ac))/(2a)根据这个公式,我们可以得到一些关于二次函数零点分布情况的结论。
1.零点的数量:根据一元二次方程的解的公式,零点的数量取决于判别式的值,即(b^2-4ac)的正负性。
如果判别式大于零,方程有两个不同的实数根;如果判别式等于零,方程有两个相等的实数根;如果判别式小于零,方程没有实数根,但可能有两个复数根。
2.对称性:二次函数的零点也与其图像的对称性有关。
由于二次函数是关于抛物线的对称轴对称的,所以如果一个根为x,则对称轴上的距离为2x的点也是零点。
换句话说,如果(x1,0)是函数图像上的一个零点,那么对称轴上的点(-x1,0)也是零点。
3.零点位置与抛物线开口方向的关系:二次函数的开口方向由系数a的正负性决定。
如果a大于零,抛物线开口向上,此时函数图像的最低点就是零点的位置;如果a小于零,抛物线开口向下,此时函数图像的最高点就是零点的位置。
4.零点的分布情况:二次函数的零点的分布情况也与判别式的值有关。
如果判别式大于零,说明方程有两个不同的实数根,这意味着抛物线与x轴相交于两个不同的点;如果判别式等于零,说明方程有两个相等的实数根,这意味着抛物线与x轴相切于一个点;如果判别式小于零,说明方程没有实数根,这意味着抛物线与x轴没有交点。
在解析几何中,二次函数的零点也被称为方程与坐标轴的交点。
高考数学复习考点题型解题技巧专题讲解第10讲函数零点专项突破高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难.考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.14B.18C.78-D.38-【答案】C利用函数零点的意义结合函数f (x )的性质将问题转化为一元二次方程有等根即可. 【详解】依题意,函数y =f (2x 2+1)+f (λ-x )的零点,即方程f (2x 2+1)+f (λ-x )=0的根, 由f (2x 2+1)+f (λ-x )=0得f (2x 2+1)=-f (λ-x ),因f (x )是R 上奇函数, 从而有f (2x 2+1)=f (x -λ),又f (x )是R 上的单调函数,则有2x 2+1=x -λ,而函数y =f (2x 2+1)+f (λ-x )只有一个零点,于是得2x 2-x +1+λ=0有两个相等实数解, 因此得Δ=1-8(1+λ)=0,解得λ=78-,所以实数λ的值是78-.故选:C.练(2021·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( )A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)【答案】B 【详解】因为()f x 为开口向上的抛物线,且对称轴为2a x =-,在区间(-1,1)上有两个不同的所以()()101002112f f a f a ⎧->⎪>⎪⎪⎛⎫⎨-< ⎪⎝⎭⎪⎪⎪-<-<⎩,即22102102022222a a a a a a a a ⎧-->⎪⎪⎪+->⎪⎨⎪⎛⎫---<⎪ ⎪⎝⎭⎪⎪-<<⎩,解得023a <<, 所以实数a 的取值范围是2(0,)3.故选:B例1-2.(2021·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定 【答案】C解析:()()22x f x x x a e '=++当1a ≥时,220x x a ++≥在R 恒成立,所以()()2'20xf x x x a e =++≥在R 恒成立,所以函数()()2x f x x a e =+在R 上单调递增,没有最小值;当1a <时,令() '0f x =得111x a =---,211x a =--,且12x x <当x →-∞时,所以若有最小值,只需要2∵()()22221022100xf x a e a a =--⇔--≤⇔≤≤,∴20x x a ++=的判别式1410a ∆=->≥,因此()2g x x x a =++有两个零点.故选:C .类型二、区间零点存在性定理例2-1.(2021·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( ) A .()0,1B .()1,2 C .()2,3D .()3,4【答案】B 【详解】∵()ln 1f x x x =-,()1ln f x x '=+,由()1ln 0f x x '=+=得,1ex =,∴1,()0ex f x '>>,函数()f x 为增函数,当01x <<时,()ln 10f x x x =-<,又()()410,2ln 21ln 0e12f f =-<=-=>,故()f x 的零点所在的区间是()1,2.练.(2021·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B 【详解】因为()2xf x x =+为单调递增函数,当2x =-时,()2722204f --=-=-<,当1x =-时,()1112102f --=-=-<,当0x =时,()002010f =+=>,由于()()010f f ⋅-<,且()f x 的图象在()1,0-上连续, 根据零点存在性定理,()f x 在()1,0-上必有零点,故选:B.类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个B .2个C .3个D .0个【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个.故选:B .练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( )A .ln 3,92e e ⎡⎫⎪⎢⎣⎭B .ln 20,4e ⎛⎫⎪⎝⎭C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e⎡⎫⎪⎢⎣⎭【分析】()1ln 0x f x ax x +=-=可得21ln xa x +=,作出函数()21ln x g x x +=的图象,可知满足不等式()a g x <的整数解有且只有一个,从而可得出关于实数a 的不等式,由此可解得实数a 的取值范围. 【详解】由()1ln 0x f x ax x +=-=可得21ln xa x +=,令()21ln x g x x +=,其中0x >,则()()243121ln 2ln 1x x x x x g x x x ⋅-+--'==.当120x e -<<时,()0g x '>,此时函数()g x 单调递增,当12x e ->时,()0g x '<,此时函数()g x 单调递减.且当12x e ->时,()21ln 0xg x x +=>,作出函数()g x 的图象如下图所示:由图可知,满足不等式()a g x <的整数解有且只有一个,所以,()1,m n ∈,()2,m n ∉,所以,()()21g a g ≤<,即1ln2ln2144e a +=≤<.因此,实数a 的取值范围是ln 2,14e ⎡⎫⎪⎢⎣⎭.故选:D. 【点睛】关键点点睛:本题考查利用函数不等式的整数解的个数求参数,解题的关键在于利用图象确定整数有哪些,进而可得出关于参数不等式(组)来进行求解.例3-2(一个曲线一个直线)28.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.【答案】7,24⎛⎫ ⎪⎝⎭ 【分析】求出函数()()y f x g x =-的表达式,构造函数()()(2)h x f x f x =+-,作函数()h x 的图象,利用数形结合进行求解即可. 【详解】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--⎪-=⎨<⎪⎩… ,∵函数y =f (x )−g (x )恰好有四个零点,∴方程f (x )−g (x )=0有四个解,即f (x )+f (2−x )−b =0有四个解, 即函数y =f (x )+f (2−x )与y =b 的图象有四个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩剟 , 作函数y =f (x )+f (2−x )与y =b 的图象如下,115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,74<b <2, 故答案为:7,24⎛⎫⎪⎝⎭. 例3-3【一个曲线和一个倾斜直线】【2021福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.【答案】13a ≤-或2a e ≥【解析】函数g x f x ax a =-+()()存在零点,即方程0f x ax a -+=() 存在实数根,也就是函数y f x =()与1y a x =-()的图象有交点.如图:直线1y a x =-()恒过定点10(,), 过点21-(,)与10(,)的直线的斜率101213k -=---=; 设直线1y a x =-()与x y e =相切于00x x e (,),则切点处的导数值为0x e ,则过切点的直线方程为()000x x y e e x x --=,由切线过10(,),则()00000012x x x x e e x x e e --∴=,=, 得02x = .此时切线的斜率为2e .由图可知,要使函数g x f x ax a =-+()() 存在零点,则实数a 的取值范围为13a ≤- 或2a e ≥.【点睛】本题考查函数零点的判定,其中数形结合的解题思想方法与数学转化思想方法的灵活应用.例3-4(两个曲线)49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2 【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定. 【详解】2π()2sin sin()2f x x x x =+-222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数, 在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点, 即f (x )的零点个数为2. 故答案为:2.(两个曲线)8.(2021·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3B .72C .4D .92【答案】B 【分析】根据函数的奇偶性确定函数()f x 的周期,将函数的零点问题转化为两函数的交点,最后通过数形结合求解出参数的值. 【详解】因为()1f x +是奇函数,所以函数()y f x =的图象关于点()1,0成中心对称, 即(2)()0f x f x -+=.又因为函数()f x 为奇函数,所以(2)()()f x f x f x -=-=-,即(2)()f x f x +=,所以函数()y f x =是周期为2的周期函数.由于函数()y f x =为定义在R 上的奇函数,则(0)0f =,得(2)(4)0f f ==. 又因为当(]0,1x ∈时,21()log f x x=,所以21log 212f ⎛⎫== ⎪⎝⎭,11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.作出函数()y f x =与函数()sin y x π=的图象如下图所示,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-,12-,0,12,1,32,2,52,3,72,第11个交点的横坐标为4.因此,实数m 的取值范围是7,42⎡⎫⎪⎢⎣⎭,故实数m 的最小值为72.故选:B.f x满足(两个曲线)【2021河北省武邑中学高三】若定义在R上的偶函数() ()()=,则函数()3logf x xy f x x=-的零点个数是+=,且当[]2x∈时,()f x f x0,1()A. 6个 B. 4个 C. 3个 D. 2个【答案】B|x|的图象,【解析】分析:在同一个坐标系中画出函数y=f(x)的图象与函数y=log3这两个函数图象的交点个数即为所求.详解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f (x)=x,|x|的零点的个数等于函数故当x∈[﹣1,0]时,f(x)=﹣x.因为函数y=f(x)﹣log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f y=f(x)的图象与函数y=log3|x|的图象,如图所示:(x)的图象与函数y=log3显然函数y=f (x )的图象与函数y=log 3|x|的图象有4个交点,故选B .点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,根据函数零点和方程的关系进行转化是解决本题的关键.判断零点个数一般有三种方法:(1)方程法;(2)图像法;(3)方程+图像法.本题利用的就是方法(3).例3-5(直接解出零点)(2021·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12B .14C .16D .18 【答案】C 【分析】令()25sin sin 10f x x x =--=可得21sin sin 5x x -=,根据()2sin sin g x x x =-为偶函数,只需求()21sin sin 5g x x x =-=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解的个数,等价于21sin sin 5x x -=或21sin sin 5x x -=-的解的个数,结合正弦函数的性质以及对称性即可求解.【详解】令()0f x =可得21sin sin 5x x -=,设()2sin sin g x x x =-,则()()22sin sin sin sin g x x x x x g x -=--=-=,所以()2sin sin g x x x =-是偶函数,故只需要讨论21sin sin 5x x -=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解得个数, 当0x ≥时,由21sin sin 5x x -=可得21sin sin 5x x -=或21sin sin 5x x -=-,解方程21sin sin 5x x -=可得sin x =sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =解方程21sin sin 5x x -=-可得sin x =或sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =有三解,sin x =有三解, 所以在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,()21sin sin 5g x x x =-=有8解, 根据对称性可得()21sin sin 5g x x x =-=在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上有16解,所以函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为16, 故选:C.类型三、利用周期性判断零点个数例3-1.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( )A .404B .804C .806D .402 【答案】A 【分析】根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数. 【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为()f x 为偶函数,所以()()()444f x f x f x +=-=-, 所以()()8f x f x +=所以()f x 是周期函数,且周期为8,且()f x 关于4x =对称,又当(]0,4x ∈时,()()ln 2x f x x=, 则()()()221ln 21ln 2(0)x x xx f x x x x ⋅--'==>, 令()0f x '=,解得e2x =,所以当e0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为增函数,当e ,42x ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x 为减函数,作出()f x 一个周期内图象,如图所示:因为()f x 为偶函数,且不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,所以不等式在()0,200内有100个整数解,因为()f x 周期为8,所以在()0,200内有25个周期, 所以()f x 在一个周期内有4个整数解,(1)若0a >,由()()20f x af x +>,可得()0f x >或()f x a <-,由图象可得()0f x >有7个整数解,()f x a <-无整数解,不符合题意; (2)若0a =,则()0f x ≠,由图象可得,不满足题意;(3)若0a <,由()()20f x af x +>,可得 ()f x a >-或()0f x <,由图象可得()0f x <在一个周期内无整数解,不符合题意, 所以()f x a >-在一个周期()0,8内有4个整数解,因为()f x 在()0,8内关于4x =对称, 所以()f x 在()0,4内有2个整数解,因为()1ln 2f =,()ln 42ln 22f ==,()ln 633f =, 所以()f x a >-在()0,4的整数解为1x =和2x =,所以ln 6ln 23a ≤-<,解得ln 6ln 23a -<≤-. 故选:C类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24 【答案】A 【分析】首先判断()f x 的奇偶性,再根据奇偶函数的对称性计算可得;【详解】由()()0g x g x -+=得()y g x =的图象关于()0,0对称,因为()1sin sin f x x x=+,定义域为{}|,x x k k Z π≠∈,且()()()()11sin sin sin sin f x x x f x x x -=+-=--=--,所以()1sin sin f x x x=+为奇函数,即()1sin sin f x x x=+也关于()0,0对称, 则函数()1sin sin f x x x=+与()y g x =图象的交点关于()0,0对称,则不妨设关于点()0,0对称的坐标为()()1166,,,,x y x y ⋯,则16160,022x x y y ++==, 252534340,0,0,02222x x y y x x y y ++++==== 则1616252534340,0,0,0,0,0x x y y x x y y x x y y +=+=+=+=+=+=,即()61i i i x y =+=∑()3000⨯+=,故选:A .例4-2(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36 【答案】C 【分析】根据题意可得函数()f x是周期为4,关于点(4,0)中心对称的函数,再将函数()()()4y k x=与()4=-的交点的横坐标,又函数=--的所有零点转化为()y f xg x f x k x()4=-经过定点(4,0),且关于(4,0)中心对称,在坐标系中作出草图,根据数形结合y k x即可求出结果.【详解】∵定义在R上的奇函数()=-,故图象关于1f x f x2f x满足()()x=对称,∴()()2+=-,f x f x--=-,故()()2f x f x∴()()()f x f x f x+=-+=,即周期为4,42又()f x一个对称中心,f x定义在R上的奇函数,所以(4,0)是函数()又因为当[]=,作出函数()f x的草图,如下:f x xx∈-时,()31,1函数()()()4=与()4y k x=-的交点的横坐标,y f xg x f x k x=--的所有零点即为()易知函数()4=-经过定点(4,0),且关于(4,0)中心对称,y k x又1335k <<,分别作出函数()143y x =-和()345y x =-的图象,则函数()4y k x =-的图象在函数()143y x =-和()345y x =-的图象之间,如下图所示:则()y f x =与()4y k x =-交点关于(4,0)中心对称,由图像可知关于(4,0)对称的点共有3对,同时还经过点(4,0),所以1324428ni i x ==⨯⨯+=∑.故选:C.类型五、等高线的使用例5-1.(2021·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________. 【答案】[)3,10/310a b c ≤++<【分析】根据题意,作出函数()y f x =图象,数形结合即可求解.根据题意,作出函数()y f x =图象,令()()()f a f b f c t ===,可知函数()y f x =图象与y t =的图象有三个不同交点,由图可知01t ≤<.因a 、b 、c 互不相等,故不妨设a b c <<,由图可知1212a b +=⨯=.当01t <<,时()8log 1c t -=,因01t <<,所以118c <-<,即29c <<,故310a b c <++<; 当0t =时,2c =,故3a b c ++=. 综上所述,310a b c ≤++<. 故答案为:[)3,10.例5-2(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫⎪⎝⎭【答案】A根据分段函数解析式研究()f x 的性质,并画出函数图象草图,应用数形结合及题设条件可得123412345x x x x <<<<<<<<、348x x +=、12(1)(1)1x x --=,进而将目标式转化并令11121t x x =-+,构造1()21g x x x =-+,则只需研究()g x 在3(,2)2上的范围即可. 【详解】由分段函数知:12x <≤时()(,0]f x ∈-∞且递减;23x <≤时()[0,1]f x ∈且递增;34x <<时,()(0,1)f x ∈且递减;4x ≥时,()[0,)f x ∈+∞且递增;∴()f x 的图象如下:()f x a =有四个实数根1x ,2x ,3x ,4x 且1234x x x x <<<,由图知:01a <<时()f x a =有四个实数根,且123412345x x x x <<<<<<<<,又348x x +=, 由对数函数的性质:121212(1)(1)()11x x x x x x --=-++=,可得21111x x =-, ∴令()3411122111112214x x x x x t x x x ++=+=-+=,且1322x <<, 由1()21g x x x=-+在3(,2)2上单增,可知31()21(2)2g x g x<-+<,所以10932t <<故选:A.例5-3(2021·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( ) ①()0,1m ∈;②()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ③函数()y f x x m =--恰有三个零点.A .①②B.①③C.②③D.①②③ 【答案】D 【分析】①将问题转化为直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,观察图像可得答案;②设a b c d <<<,则可得2a b +=-, ()1ln 1ln c d -+=+,根据关系代入a b c d +++求值域即可;③函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,关注1m =和0m =时的交点个数即可得答案根据图像可得答案. 【详解】解:函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩的图像如图:()()()()f f b f d a c f m ====,即直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,故()0,1m ∈,①正确;()()()()f f b f d a c f m ====,不妨设a b c d <<<,则必有2a b +=-, ()1ln 1ln c d -+=+,ln ln 2d c ∴+=-,则2e c d-=,且11e d << 2e c d d d-∴++=,由对勾函数的性质可得函数2e y x x -=+在1,1e ⎛⎫ ⎪⎝⎭上单调递增,()2122e ,e 1e dc d d ---∴+=∈++,()1222,1a b c d e e --∴+++∈--,②正确;函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,如图当1m =时,函数()y f x =与y x m =+的图像有3个交点, 当0m =时,研究y x =与1ln y x =+是否相切即可,1y x'=,令1y '=,则1x =,则切点为()1,1,此时切线方程为11y x -=-,即y x =, 所以y x =与1ln y x =+图像相切,此时函数()y f x =与y x m =+的图像有3个交点, 因为()0,1m ∈,故函数()y f x =与y x m =+的图像恒有3个交点, 即函数()y f x x m =--恰有三个零点,③正确.故选:D. 【点睛】关键点点睛:将函数的零点问题转化为图像的交点问题,可以使问题更加直观,并方便解答.例5-4.(2021·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1B .2C .3D .4 【答案】ABC 【分析】在同一平面直角坐标系中作出(),y f x y m ==的函数图象,根据图象有3个交点确定出123,,x x x 的关系,所以可将方程转化为()3315(ln 21)n x x -+=-,然后构造函数()()()ln 21g x x x =+-并分析()g x 的单调性确定出其值域,由此可求解出n 的取值范围,则n 的值可确定.【详解】在同一平面直角坐标系中作出(),y f x y m ==的函数图象如下图所示:当1x ≤时,()2333y x =-++≤,当1x >时,ln 11y x =+>,所以由图象可知:()1,3m ∈时关于x 的方程()f x m =恰有三个不同实数解,又()221223236,ln 625x x x x x ++=⨯-=+-=--,所以()()()121223323ln 2)5651(16n x x x x x x x -+=+++-=-, 又因为()1,3m ∈,所以()3ln 11,3x +∈,所以()231,e x ∈ , 设()()()()()2ln 211,e g x x x x =+-∈,所以()1ln 3g x x x'=-+,显然()g x '在()21,e 上单调递增,所以()()120g x g ''>=>,所以()g x 在()21,e 上单调递增,所以()()()()21,e g x g g ∈,即()()20,4e 4g x ∈-, 所以()1250,4e 4n -∈-,所以n 可取1,2,3 故选:ABC.类型六、嵌套函数零点例6-1.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个 【答案】C 【详解】函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩的图象如图所示,由()()102y f f x =-=,得()()12f f x =,令()f x t =,则1()2f t =,当0t ≤时,1322t +=,得12t =-,当0t >时,1lg 2t =,则t所以当12t =-时,1()2f x =-,由图象可知方程有两个实根,当 =t ()f x =,由图象可知,方程有1个实根,综上,方程()()12f f x =有3个实根,所以函数()()12y f f x =-的零点个数为3,故选:C例6-2.(2021·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x=-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________. 【答案】3ln3- 【分析】设()f x t =,则根据题意得2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <,故122t t +=,212t t =-,再结合()f x 的图象可得1221x x e t ==,3212x t t ==-,101t <<,进而1231122ln 34x x x t t -+=-+,再构造函数()()ln 34,01h t t t t =-+<<,分析函数的单调性,求得最大值. 【详解】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根,即2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,方程1()f x t =或2()f x t =有三个不等实根123,,x x x ,且123x x x <<, 作出图象如图所示:那么1221x x e t ==,可得3212x t t ==-,101t <<, 所以1231122ln 34x x x t t -+=-+,构造新函数()()ln 34,01h t t t t =-+<<,则13()t h t t-'=,所以()h t 在10,3⎛⎫ ⎪⎝⎭上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,所以max 1()3ln 33h t h ⎛⎫==- ⎪⎝⎭,所以12322x x x -+的最大值为3ln3-. 故答案为:3ln3-.例6-3(2021·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________. 【答案】(]01,.【分析】令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =,采用数形结合法即求. 【详解】函数()g x 的零点即为方程()0g x =的解,令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =的图象,由图象可知,当1t>时,有唯一的x与之对应;当1t≤时,有两个不同的x与之对应.由方程组()()t f xf t a=⎧⎪⎨=⎪⎩,①②有三个不同的x知,需要方程②有两个不同的t,且一个1t>,一个1t≤,结合图象可知,当(]01a∈,时,满足一个(]10t∈-,,一个(]12t∈,,符合要求,综上,实数a的取值范围为(]01,.故答案为:(]01,.例6-4. 已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意结合函数的图形将原问题转化为二次方程根的分布的问题,据此得到关于a的不等式组,求解不等式组即可.【详解】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得: .即 的取值范围是.类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x xax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3B .(]1,3C .[]1,3D .[)3,+∞【解析】(1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,令2x -πsin x=0,得2,0π==x x ,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)【答案】B 【解析】由题意得()221362f x x ax a a'=+++()0a >, 因为()f x 有极值,所以()2213620f x x ax a a'=+++=有2个不等实根,即()222116432120a a a a a ⎛⎫⎛⎫∆=-⨯⨯+=-> ⎪ ⎪⎝⎭⎝⎭,即310a a->, 因为0a >,解得1a >.令()()()2213620h x f x x ax a a a '==+++>,由()660h x x a '=+=得x a =-,设()f x 的极值点为1x ,2x ,则1x ,2x 为方程()2213620f x x ax a a'=+++=的根,则122x x a +=-,2122133a x x a=+, 因为()()3223221211122211321321f x f x x ax a x x ax a x a a ⎛⎫⎛⎫+=+++++++++ ⎪ ⎪⎝⎭⎝⎭()()()()3221212121212121336220x x x x x x a x x ax x a x x a ⎛⎫=+-+++-++++= ⎪⎝⎭,所以()()()2121263f x f x f a a a '++-=-+≥-, 令()()211g a a a a =-+>,易得()g a 在()1,+∞上单调递减,且()2633g =-,所以31≤<a . 故选:B.例7-2已知函数()ln()(0)x a f x e x a a -=-+>. (1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.【答案】(1)证明见解析;(2)12(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明()'f x 在(0,)+∞上存在唯一的零点即可;(2)根据导函数零点0x ,判断出()f x 的单调性,从而()min f x 可确定,利用()min 1f x =以及1ln y x x=-的单调性,可确定出0,x a 之间的关系,从而a 的值可求. 【详解】(1)证明:∵()ln()(0)x a f x e x a a -=-+>,∴1()x af x e x a-'=-+. ∵x a e -在区间(0,)+∞上单调递增,1x a+在区间(0,)+∞上单调递减, ∴函数()'f x 在(0,)+∞上单调递增.又1(0)a aaa e f e a ae--'=-=,令()(0)a g a a e a =->,()10ag a e '=-<, 则()g a 在(0,)+∞上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+ 所以函数()'f x 在(0,)+∞上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得()00010x af x ex a-'=-=+,即001x a e x a-=+(*). 函数1()x af x e x a-'=-+在(0,)+∞上单调递增. ∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.∴()()0min 00()ln x af x f x e x a -==-+.由(*)式得()()min 0001()ln f x f x x a x a==-++. ∴()001ln 1x a x a-+=+,显然01x a +=是方程的解. 又∵1ln y x x =-是单调递减函数,方程()001ln 1x a x a -+=+有且仅有唯一的解01x a +=, 把01x a =-代入(*)式,得121a e -=,∴12a =,即所求实数a 的值为12.【方法总结】类型一:化为一元二次函数得零点问题 类型二:复杂函数得零点思想:①先设后求、设而不求②与零点存在性定理结合使用步骤:(1)用零点存在性定理判定导函数零点的存在性,列出零点方程f(x 0)=0,并结合f(x)的单调性得到零点的取值范围.(2)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围. 【答案】(],2-∞.解:原不等式等价于()()ln 21xxe x x b x -+≥-+,即ln 1x xe x x bx +--≥,在()0,x ∈+∞上恒成立,等价于ln 1x xe x x b x +--≥,在()0,x ∈+∞上恒成立,令()ln 1x xe x x t x x +--=,()0,x ∈+∞,∴()22ln x x e xt x x+'=, 令()2ln xx x e x ϕ=+,则()x ϕ为()0,∞+上的增函数,又当0x →时,()x ϕ→-∞,()10e ϕ=>,∴()x ϕ在()0,1存在唯一的零点0x ,即0020e n 0l xx x +=,由0001ln 2000000ln 1ln 0ln x x x x x e x x e e x x ⎛⎫+=⇔=-= ⎪⎝⎭,又有x y xe =在()0,∞+上单调递增, ∴0001ln ln x x x ==-,001x e x =,∴()()00000min 0ln 12x x e x x t x t x x +--===⎡⎤⎣⎦, ∴2b ≤,∴b 的取值范围是(],2-∞.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.【答案】(1)答案见解析;(2)()g x 只有一个零点,理由见解析.(1)求出导数()'f x ,按a 分类讨论确定()'f x 的正负,得函数的单调性;(2)求出导函数()'g x ,对其中一部分,设()1e xh x x=-(0x >),用导数确定它的零点0(0,1)x ∈,这样可确定()g x 的单调性与极值,然后结合零点存在定理确定结论. 【详解】(1)()f x 的定义域为R ,()()()()2222e 2e 2e x x xx x x a f x a x =-+-+=+-',当2a ≥时,()0f x '≥,则()f x 在R 上是增函数;当2a <时,()(2(2)e e xx x a x x f x ⎡⎤=--=⎣⎦',所以()0x f x =⇔='()0x f x >⇔<'或x > ()0f x x ⇔<'<所以()f x 在(上是减函数,在(,-∞和)+∞上是增函数.(2)当1a =时,()()2211e ln 2xg x x x x =--+,其定义域为()0,∞+,则()()()1e 11x g x x x x '=+--⎛⎫⎪⎝⎭.设()1e xh x x =-(0x >),则()21e 0xh x x'=+>,从而()h x 在()0,∞+上是增函数,又1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->, 所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0x h x x =-=,即001e x x =,00ln x x =-. 列表如下:由表格,可得()g x 的极小值为()12g =-;()g x 的极大值为()()022222000000000002111111e ln 2222x x x g x x x x x x x x x -+=--+=--=-+-因为()0g x 是关于0x 的减函数,且01,12x ⎛⎫∈ ⎪⎝⎭,所以()03128g x -<<-,所以()g x 在(]0,1内没有零点.又()1102g =-<,()22e 2ln 20g =-+>,所以()g x 在()1,+∞内有一个零点. 综上,()g x 只有一个零点.类型八、隐零点之极值点偏离类型一、目标与极值点相关 思想:偏离−−→−转化对称步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数 类型二、目标与极值点不相关步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2021·江苏高三开学考试)已知函数()ln a f x x x=+(a ∈R )有两个零点.(1)证明:10ea <<.(2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)首先求出导函数,当0a ≤时显然不成立,当0a >时求出函数的单调区间,即可得到函数的极小值()f a ,依题意()0f a <,即可求出参数a 的取值范围;(2)由(1)可得120x a x <<<,设()()()2g x f a x f x =--,求出函数的导函数,即可得到122x x a +>,(3)由(1)可得120x a x <<<,再设21x tx =,1t >,则1221ln ln x x t x x ==,则()()12ln 1ln ln 1t t x x t t t +⎛⎫+=- ⎪-⎝⎭,再利用导数说明()ln 1th t t =-的单调性,即可得到121x x +<,从而得证; 【详解】(1)证明:由()ln af x x x=+,0x >,可得()21af x x x '=-,0x >.当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,与题意不符.当0a >时,令()210af x xx '=-=,得x a =. 当()0,x a ∈时,()0f x '<,()f x 单调递减;当(),x a ∈+∞时,()0f x '>,()f x 单调递增.可得当x a =时,()f x 取得极小值()ln 1f a a =+.又因为函数()ln a f x x x=+有两个零点,所以()n 10l a f a =+<,可得1e a <.综上,10ea <<.(2)解:由上可得()f x 的极小值点为x a =,则120x a x <<<.设()()()()l 2ln 22n a ag x f a x f x a x a x xx =--=-+---,()0,x a ∈, 可得()()()()222224110222a x a a ag x a x x x a x x a x ---'=--+=>---,()0,x a ∈,所以()g x 在()0,a 上单调递增,所以()()0g x g a <=,即()()20f a x f x --<,则()()2f a x f x -<,()0,x a ∈,所以当120x a x <<<时,12a x a ->,且()()()1122f a x f x f x -<=.因为当(),x a ∈+∞时,()f x 单调递增,所以122a x x -<,即122x x a +>.(3)由(1)可得120x a x <<<,设21x tx =,1t >,则1122ln 0,ln 0,a x x a x x ⎧+=⎪⎪⎨⎪+=⎪⎩则1221ln ln x x t x x ==,即()1211ln ln ln ln ln x t x t tx t x t ===+.所以1ln ln 1t tx t =--, 所以()()()()()1211ln 1ln ln ln ln 1ln ln 1ln 111t t tt x x x t x t t t t t t ⎛⎫++=+=++=-++=- ⎪--⎝⎭.又因为()ln 1th t t =-,则()()211l n 01t t h t t --'=<-,所以()h t 在()1,+∞上单调递减,所以()ln 1ln 1t t t t +<-,所以()12ln 0x x +<,即12 1.x x +<综上,1221a x x <+<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π. 【解析】 (1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,当x∈⎝ ⎛⎭⎪⎫0,π2时,设h(x)=2x -πsin x ,h′(x)=2-πcos x ,显然h′(x)单调递增,而h′(0)<0,h′⎝ ⎛⎭⎪⎫π2>0,由零点存在性定理知,存在唯一的x 0∈⎝ ⎛⎭⎪⎫0,π2,使得h′(x 0)=0.当x∈(0,x 0)时,h′(x)<0,h(x)单调递减,当x∈⎝ ⎛⎭⎪⎫x 0,π2时,h′(x)>0,h(x)单调递增,而 h(0)=0,h ⎝ ⎛⎭⎪⎫π2=0,故x∈⎝ ⎛⎭⎪⎫0,π2,h(x)<0,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)证明:依题意得x 1∈⎝ ⎛⎭⎪⎫0,π2,x 2∈⎝ ⎛⎭⎪⎫π2,+∞,f(x 1)=f(x 2), 构造函数F(x)=f(x)-f(π-x),x∈⎝⎛⎭⎪⎫0,π2,F′(x)=f′(x)+f′(π-x)=2π-2πsin x >0,即函数F(x)单调递增,所以F(x)<F ⎝ ⎛⎭⎪⎫π2=0,即当x∈⎝⎛⎭⎪⎫0,π2时,f(x)<f(π-x),而x 1∈⎝ ⎛⎭⎪⎫0,π2,所以f(x 1)<f(π-x 1),又f(x 1)=f(x 2),即f(x 2)<f(π-x 1),此时x 2,π-x 1∈⎝ ⎛⎭⎪⎫π2,+∞. 由(1)可知,f(x)在⎝ ⎛⎭⎪⎫π2,+∞上单调递增,所以x 2<π-x 1,即x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当12()()f x f x =12()x x ≠时,120x x +<【解析】解: (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=((( ;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,()y f x =在0]-∞在(,上单调递增;在[0x ∈+∞,)上单调递减. (Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
解决二次函数零点问题的方法二次函数是数学中常见的一种函数形式,其一般表达式为y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
二次函数的零点指的是使得函数取值为0的x值,也就是满足方程ax² + bx + c = 0的解。
解决二次函数零点问题的常用方法包括公式法、配方法和图像法。
下面将分别介绍这些方法的具体步骤。
一、公式法公式法是解决二次函数零点问题最简单直接的方法。
根据二次方程的求根公式,一元二次方程ax² + bx + c = 0的根可以通过以下公式得到:x₁ = (-b + √(b² - 4ac))/2ax₂ = (-b - √(b² - 4ac))/2a其中,√表示开方运算。
步骤如下:1. 根据给定的二次函数,确定方程中的a、b、c的值;2. 将a、b、c的值带入上述公式,计算出x₁和x₂的值;3. 得到两个根后,即可得到二次函数的零点解。
二、配方法配方法也称为完全平方公式法,适用于当一元二次方程无法直接使用公式法解时。
其基本思路是通过变换,将一元二次方程转化为一个完全平方的形式,从而便于求解。
步骤如下:1. 将二次函数的一般形式ax² + bx + c完全平方,即进行配方;2. 将配方后的二次函数转化为完全平方形式后,将其写成(x + p)² + q的形式;3. 令(x + p)² + q = 0,并求解出x的值。
三、图像法图像法是通过观察二次函数的图像,找出函数与x轴相交的点,从而得到零点的方法。
这种方法相对直观,适合对函数的整体形态有一定了解的情况下使用。
步骤如下:1. 将二次函数的方程转化为标准形式,并确定a、b、c的值;2. 绘制出二次函数的函数图像;3. 观察函数图像与x轴的交点,即为零点的值。
在使用图像法时,如果很难准确判断二次函数与x轴的交点时,可以借助计算机绘图软件进行辅助,以提高求解的准确性。