第九章-曲柄连杆机构动力学分析
- 格式:ppt
- 大小:3.49 MB
- 文档页数:1
目录目录 (1)第1章绪论 (3)1.1研究意义 (3)1.2发展现状 (3)1.3研究方法与内容 (4)第2章柴油机的热力学分析 (5)2.1柴油机的理论热循环 (5)2.2柴油机的实际热循环 (8)2.3热力学计算即求平均指示压力 (9)2.4 小结 (11)第3章柴油机的动力性和经济性分析 (12)3.1柴油机的指示参数 (12)3.1.1 平均指示压力 (12)3.1.2 指示功率 (13)3.1.3 指示热效率与指示燃油油耗 (14)3.2柴油机的有效指标 (15)3.2.1 有效功率和机械效率 (15)3.2.2 平均有效压力和升功率 (16)3.2.3 有效热效率和有效燃油消耗率 (18)3.2.4 根据吸入空气量计算平均有效压力 (19)3.3标志柴油机整机性能的其他参数 (21)3.3.1 活塞的平均速度 (21)3.3.2 强化系数 (22)3.3.3 比质量 (22)3.4提高柴油机动力性能和经济性能的主要措施 (22)3.5小结 (24)第4章曲柄连杆机构的运动与受力分析 (25)4.1曲柄连杆机构的运动分析 (25)4.1.1 活塞的位移 (25)4.1.2 活塞速度 (26)4.1.3 活塞加速度 (27)4.2曲柄连杆机构的受力分析 (27)4.2.1 气体压力的作用 (28)4.2.2 惯性力的作用 (28)4.2.3 作用在活塞上的合力及其分解 (30)4.3小结 (33)第5章结论 (33)谢辞 (34)参考文献 (35)第1章绪论1.1 研究意义柴油机具备高扭矩、高寿命、低油耗、低排放、热效率高、功率范围广、起动迅速、运行安全、维修方便、使用寿命较长等特点,成为解决工程机械能源问题最现实和最可靠的手段。
因此柴油机的使用范围越来越广,数量越来越多,同时对柴油机的动力性能、经济性能、控制废气排放和噪声污染的要求也越来越高。
柴油机发动机的工作过程研究是应用的基础。
曲柄连杆机构运动及动力特性分析学生姓名:学号:专业:院(系):完成时间:摘要本文针对柴油机曲柄连杆机构运动和动力特性分析,运用自己在理论力学、高等数学、线性代数、工程力学等科目的知识,深入的分析了曲柄连杆机构在运动过程中的运动规律,并且用代数的方法精确地了得出了机构在运动过程中机构中主要零件的运动规律和所承爱的力及力矩变化关系式,并且以EA1113柴油机为例,进行了精确的计算。
从而为设计曲柄连杆机构和减小发动机震动提供了理论支持。
关键词:曲柄连杆机构;运动分析;力学分析特性目录第1章柴油机介绍.......................... .. (4)1.1柴油机概述 (4)1.2柴油机系统的机构及工作原理 (4)第2章柴油机的运动和力析 (5)2.1曲柄连杆机构的类型 (5)2.2曲柄连杆机构运动分析 (6)2.2.1活塞位移 (7)2.2.2活塞的速度 (8)2.2.3活塞的加速度 (9)2.3曲柄连杆机构中的作用力 (9)2.3.1气缸内工作物质的作用力 (9)2.3.2机构的惯性力 (11)2.4本章小结 (17)第3章国内外柴油机的发展现状 (17)前言人们想起柴油车,总会想起浓烟滚滚、噪音大等等问题,其实随着2003年第三代电控高压共轨喷射系统的发展,噪音问题和柴油机震动问题都有了改善,新一代的柴油发动机在保障噪音低和震动小的前提下,还拥有经济性好,动力大等优点。
这吸引了国际上有关大公司对柴油发动机的热情,也大大促进了柴油车在国外的销售,如今欧洲柴油车已经抢夺了汽油车的半壁江山,而部分车型,比如路虎在欧洲90%都是柴油版本。
柴油车的优点如此突出,然而振动问题和噪声问题却日益突出,致使其零部件磨损加重、噪声升高、寿命降低、工作条件恶化。
柴油机的曲轴是整个发动机中最重要的零件之一。
它的受损及破坏可能引起柴油机其它零件的损坏,特别是随着发动机的强化与技术发展,使曲轴的工作条件愈发苛刻。
第一章绪论1.1内燃机概述汽车自19世纪诞生至今,已经有100多年的历史了。
汽车工业从无到有,以惊人的速度在发展着,汽车工业给人类的近代文明带来翻天覆地的变化,在人类的文明进程中写下了宏伟的篇章。
汽车工业是衡量一个国家是否强大的重要标准之一,而内燃机在汽车工业中始终占据核心的地位。
内燃机是将燃料中的化学能转变为机械能的一种机器。
由于内燃机的热效率高(是当今热效率最高的热力发动机)、功率范围广、适应性好、结构简单、移动方便、比质量(单位输出功率质量)轻、可以满足不同要求等特点,已经广泛的应用于工程机械、农业机械、交通运输(陆地、内河、海上和航空)和国防建设事业当中。
因此,内燃机工业的发展对整个国民经济和国防建设都有着十分重要的作用。
1.1.1世界内燃机简史内燃机的出现和发明可以追溯到1860年,来诺伊尔(J.J.E.Lenoir1822~1900年)首先发明了一种叫做大气压力式的内燃机,这种内燃机的大致工作过程是:空气和煤气在活塞的上半个行程被吸入气缸内,然后混合气体被火花点燃;后半个行程是膨胀行程,燃烧的煤气推动着活塞下行,然后膨胀做功;活塞上行时开始排气。
这种内燃机和现代主流的四冲程内燃机相比,在燃烧前没有压缩行程,但基本思想已经有了雏形。
这种内燃机的热效率低于5%,最大功率只有4.5KW,1860~1865年间,共生产了约5000台。
1867年奥拓(Nicolaus A.Otto,1832~1891年)和浪琴(Eugen Langen,1833~1895年)发明了一种更为成功的大气压力式内燃机。
这种内燃机是利用燃烧所产生的缸内压力,随着缸内压力的升高,在膨胀行程时加速一个自由活塞和齿条机构,他们的动量将使得缸内产生真空,然后大气压力推动活塞内行。
齿条则通过滚轮离合器和输出轴相啮合,然后输出功率。
这种发动机的热效率可以达到11%,共生产了近5000台。
由于煤气机必须使用气体燃料,而当时的气体燃料的来源非常困难,这从某种意义上讲就阻碍了煤气机的进一步发展。
汽车发动机曲柄连杆机构动力学分析摘要:本文对汽车发动机的曲柄连杆机构的动力学特性进行分析,创建D6114B发动机的仿真动力学模型,利用ANSYS有限元分析软件软件得出发动机曲柄连杆机构的曲轴模态数据,分别对活塞、曲轴、连杆的受力进行分析,研究进油口、润滑油槽位置布置,为发动机机械构造设计提供参考。
关键字:发动机;曲柄连杆机构;动力学曲柄连杆机构的动力学特性对于汽车发动机的可靠性、振动效果、噪声等有很大关联,利用机械系统动力学有限元分析平台(ANSYS)创建D6114B发动机的仿真动力学模型,分析发动机曲柄连杆机构的曲轴、连杆的模态数据,对准确的掌握D6114B发动机曲柄连杆机构的零部件动力学特性具有一定的参考价值。
1. 汽车发动机曲柄连杆机构动力学模型汽车发动机曲柄连杆机构是由缸体、曲轴、连杆、飞轮活塞,构成。
上柴D6114B发动机的曲柄连杆机构的动力学模型结构如图1所示图1上柴D6114B发动机的曲柄连杆机构的动力学模型结构图缸体与曲轴连接铰链中有一条为转动铰链,其余为圆柱铰链,飞轮与曲轴固定,连接杆与曲轴之间的连接采用转动铰链,其大头一端连接曲轴,小头一端连接活塞,活塞与缸体之间采用圆柱铰链连接。
利用以上模型的各个部件的几何位置参数和质量参数建立CAD数据模型,传入给机械系统动力学有限元分析平台(ANSYS)进行分析和计算,活塞1-8作用在各缸体气压力学特性输入ANSYS如图1所示:图1 发动机各缸气体压力特性得出发动机曲柄连杆机构的曲轴模态数据结果如表1所示模态阶数 1 2 3 4 5 6 7 8 9 10频率124.8 149.9 335.4 372.1 398.0 490.7 599.2 632.1841.1 947.2模态阶数11 12 13 14 15 16 17 18 19 20频率1015.3 1264.3 1340.6 1369.2 1413.9 1465 1664 17451862.5 2394.92. 曲柄连杆机构动力学分析当对活塞逐级施加压力0-12/104pa,对应曲轴转速2200r/min,活塞运动其对气缸的侧推力在-7804~6960N之间周期性变化,侧推力对汽缸壁的磨损影响很大。
第一章绪论1.1内燃机概述汽车自19世纪诞生至今,已经有100多年的历史了。
汽车工业从无到有,以惊人的速度在发展着,汽车工业给人类的近代文明带来翻天覆地的变化,在人类的文明进程中写下了宏伟的篇章。
汽车工业是衡量一个国家是否强大的重要标准之一,而内燃机在汽车工业中始终占据核心的地位。
内燃机是将燃料中的化学能转变为机械能的一种机器。
由于内燃机的热效率高(是当今热效率最高的热力发动机)、功率范围广、适应性好、结构简单、移动方便、比质量(单位输出功率质量)轻、可以满足不同要求等特点,已经广泛的应用于工程机械、农业机械、交通运输(陆地、内河、海上和航空)和国防建设事业当中。
因此,内燃机工业的发展对整个国民经济和国防建设都有着十分重要的作用。
1.1.1世界内燃机简史内燃机的出现和发明可以追溯到1860年,来诺伊尔(J.J.E.Lenoir1822~1900年)首先发明了一种叫做大气压力式的内燃机,这种内燃机的大致工作过程是:空气和煤气在活塞的上半个行程被吸入气缸内,然后混合气体被火花点燃;后半个行程是膨胀行程,燃烧的煤气推动着活塞下行,然后膨胀做功;活塞上行时开始排气。
这种内燃机和现代主流的四冲程内燃机相比,在燃烧前没有压缩行程,但基本思想已经有了雏形。
这种内燃机的热效率低于5%,最大功率只有4.5KW,1860~1865年间,共生产了约5000台。
1867年奥拓(Nicolaus A.Otto,1832~1891 年)和浪琴(Eugen Langen,1833~1895年)发明了一种更为成功的大气压力式内燃机。
这种内燃机是利用燃烧所产生的缸内压力,随着缸内压力的升高,在膨胀行程时加速一个自由活塞和齿条机构,他们的动量将使得缸内产生真空,然后大气压力推动活塞内行。
齿条则通过滚轮离合器和输出轴相啮合,然后输出功率。
这种发动机的热效率可以达到11%,共生产了近5000台。
由于煤气机必须使用气体燃料,而当时的气体燃料的来源非常困难,这从某种意义上讲就阻碍了煤气机的进一步发展。