沪教版六年级数学上第四章圆和扇形
- 格式:doc
- 大小:45.50 KB
- 文档页数:2
沪教版六年级上册《第4章圆和扇形》同步练习卷A(2)一、想一想,填一填.(每小题3分,共36分)1. 同圆中的半径________.(填“相等”或“不等”)2. 一个圆的周长、直径、半径的和是27.84厘米,这个圆的半径是________厘米。
3. 台钟的时针长6厘米,从7时到11时,时针扫过的面积是________.4. 有大小两个圆,大圆的半径等于小圆的直径,那么小圆的面积是大圆面积的().()5. 圆心角为n∘,半径是r的扇形的面积是________.(用字母表示)6. 海关大钟的时针长2米,从四点到七点针尖走过的距离是________米;扫过的面积为________平方米。
7. 一个圆形金鱼池,半径1.2米,绕4周的长是________米。
8. 若圆、正方形、长方形的周长相等,则它们中面积最大的是________.9. 扇形的圆心角是40∘,这个扇形的面积是所在圆的面积的________.(填几分之几)10. 在圆面积为a平方厘米的圆中,圆心角是36∘的扇形面积是________,占这个圆面积的________%.11. 如果用整个圆来表示中预(1)班共有同学40人,那么评优的5名同学应该用圆心角为________的扇形来表示。
12. 如图,如果用整个圆表示24公顷稻田,则扇形C表示________公顷稻田。
二、对号入座.(将正确的答案序号选入括号内)(每小题4分,共16分)如图中扇形共有()A.3个B.4个C.5个D.6个下列说法正确的是()A.直径是直线,半径是射线B.圆的半径扩大3倍,面积也扩大3倍C.直径是半径的2倍D.两个圆的面积相等,周长必然相等在直径为8厘米的圆上有A与B两点,AB̂的弧长是4.396厘米,那么AB̂所对的圆心角是()A.45∘B.60∘C.63∘D.90∘如图所示,求阴影部分面积列式正确的是()A.48π×32360B.48π(52−32)360C.48π(5−3)2360D.48π(82−32)360三、解答题.(共68分)计算图形中阴影部分的面积如图所示,求图中阴影部分的周长。
数学六年级(上) 第四章 圆和扇形4.4扇形的面积(1)一、填空:1、由组成 围成的图形,叫做扇形。
2、设组成扇形的半径为r ,圆心角为n º,弧长为l ,那么S 扇形= = 。
3、用圆代表整体,用圆内各个扇形代表整体中的不同部分,扇形的大小反映部分占整体的百分比,这样的统计图叫做 。
4、若一个扇形的圆心角是108°,则它的面积是所在圆的面积的 (几分之几)5、把一个半径为8厘米的圆平均分成8个面积相等的扇形,则每个扇形的圆心角是 度;6、一个圆的面积是240平方厘米,圆中的一个扇形的圆心角为60°,则扇形的面积是 平方厘米。
7、扇形的面积是S ,它的半径是r ,这个扇形的弧长是 。
8、已知扇形的面积是42平方厘米,如果扇形的圆心角扩大为原来的3倍,半径不变,扩大后扇形的面积是 。
9、已知扇形的面积是54平方厘米,如果扇形的半径缩小为原来的一半,圆心角扩大为原来的2倍,变化后扇形的面积是 。
10、一个扇形面积是它所在圆面积的52,这个扇形的圆心角是 度. 11、用4条直径将一个圆平分成8等分,则每一等份的图形都是 形,它的圆心角是 度.12、把直径为18厘米的圆等分成9个扇形,每个扇形的面积是 平方厘米.13、时钟的分针长6厘米,它20分钟扫过的面积为 。
14、一扇形的半径为6厘米,面积为22.608平方厘米,这个扇形的圆心角是 。
15、圆心角为45º的扇形面积为7.35平方厘米,它所在圆的面积是 。
16、一个扇形面积是它所在圆面积的95,这个扇形的圆心角是 度. 17、如果圆的半径是15厘米,则圆心角是180º的扇形的面积是 。
18、如果圆的半径是4厘米,那么弧长为4.8厘米的扇形的面积是 。
二、选择题19、下列判断中正确的是 ( )A .半径越大的扇形面积越大; B. 所对圆心角越大的扇形面积越大;C. 所对圆心角相同,半径越大的扇形面积越大;D. 半径相等时,所对圆心角越大的扇形面积越小20、扇形面积的大小 ( )A. 只与半径长短有关B. 只与圆心角大小有关C. 与半径长短、圆心角大小有关D.与圆心角和半径都没有关系21、下列图形中阴影部分不是扇形的是 ( )A B C D22、一条弧长为23.8厘米,弧所在圆的半径为10厘米,则弧与两条半径所围成的扇形面积为( )A. 238平方厘米B. 119平方厘米C. 23.8平方厘米D. 16.9平方厘米23、扇形的半径扩大为原来的3倍,圆心角不变,则 ( )A. 面积扩大为原来的9倍B. 面积扩大为原来的3倍C. 面积不变D. 面积扩大为原来的18倍24、一个圆被4条直径平均分成若干等分,每一等份的面积是圆的面积的 ( )A. 21B. 41C. 81D. 161 25、在扇形统计图中,某扇形的面积占圆面积的15%,如果整个圆表示有40名学生,该扇形表示考试不及格的学生人数,则考试不及格的学生有 ( )A.15人B.10人C. 8人D. 6人26、在六(2)班扇形统计图中,某扇形的面积占圆面积的80%,如果该扇形表示有32名学生,则六(2)班的总人数是 ( )A. 20人B. 32人C. 36人D.40人27、下列叙述,正确的是 ( )A. 扇形是圆的一部分,圆的一部分是扇形B. 扇形的半径越大,面积就越大C. 两条半径和一条弧长就能组成一个扇形D. 在圆中任意画两条半径,一定能构成两个扇形28、下列说法,正确的是 ( )A. 在同圆或等圆中,圆心角相等的两个扇形的面积也相等B. 若两个扇形的面积相等,则它们的半径也一定相等C. 在同圆或等圆中,圆的面积不一定大于扇形的面积D. 周长相等的两个扇形,它们的面积也相等三、解答题29. 一挺机枪的有效射程是1200米,如果在120º范围内射击,则它的控制面积是多少平方米?30、汽车上有电动雨刷装置,如图,雨刷摆动的圆心角为90°,求阴影部分雨刷摆动划出区域的面积。
沪教版六上数学第四章圆和扇形同步测试卷(A)1.直径为4厘米的圆的周长是,面积是.2.一个圆的周长是314厘米,那么它的面积是.3.一个圆的面积是28.26平方厘米,那么它的周长是.4.一个扇形的半径是4厘米,圆心角为36∘,则它的弧长为厘米,面积是平方厘米.5.一个扇形的圆心角是120∘,半径为3厘米,则它的周长为厘米.6.一个扇形的面积是3.14平方厘米,圆心角为10∘,则这个扇形的直径为厘米.7.一个小圆的半径是一个大圆半径的35,则小圆周长是大圆周长的,小圆面积是大圆面积的.(填分数)8.自行车的车轮直径为60厘米,行驶1884米后,车轮共滚了周.9.一个圆环的外圆直径是7厘米,内圆直径是3厘米,则它的面积是平方厘米.10.在周长为24厘米的正方形纸片上剪一个最大的圆,这个圆的周长是厘米.11.一张圆形纸片,如果沿它的两条半径剪下圆心角为120∘的一块,得两个形,剪下的面积与剩余部分的面积比是.12.一个圆的周长是它直径的( )倍.A.3B.3.14C.3.1415926D.π13.扇形的圆心角是72∘,则该扇形的面积是它所在圆面积的( )A.12B.13C.14D.1514.已知半径为2的圆,求得它的周长和面积后,则下列说法正确的是( )A.面积比周长大B.周长比面积大C.一样大D.周长与面积无法比较15.将一个长6厘米,宽4厘米的长方形剪成一个最大的圆,则这个圆的周长是( )A.15.7厘米B.24厘米C.12.56厘米D.18.84厘米16.如图,AB,AC,CD,BD分别为四个圆的直径,甲、乙两人分别沿图示方向从A到B,结果是( )A.甲、乙走的路程一样多B.甲走的路程多C.乙走的路程多D.无法比较17.如图为两个边长相等的正方形,其中半圆的直径为正方形的边长,则图中阴影部分的周长相比( )A.甲大B.乙大C.相等D.无法比较18.已知闹钟的分针走1小时,针尖走的路程为27厘米,那么分针走20分钟,走的路程为多少?19.用100厘米长的一根钢丝作圆形钥匙圈,已知这个钥匙圈的直径是2.5厘米,问这根钢丝最多能做几个这样的钥匙圈?20.一个圆形水池的半径为8米,在它的周围铺一条宽为2米的道路,这条道路的总面积是多少平方米?21.求下列图形中阴影部分的面积.(单位:厘米)22.求下列图形中阴影部分的面积.(单位:厘米)23.如图,一个边长为1厘米的等边三角形ABC,分别以顶点C,B,A为旋转中心在桌面上向右滚动三角形,以C为滚动中心,当B到达桌面时称为滚动一次;同样,以B为滚动中心,当A点到达桌面时又完成一次滚动,依次下去⋯⋯(结果保留π)(1) 分别求出当滚动一次,两次,三次,四次时A点走过的路程;(2) 当滚动25次以后A点所走过的路程.24.如图,直径为2厘米的圆沿着边长5厘米的正方形的边滚动一圈,那么圆滚动过的面积是多少平方厘米?答案1. 【答案】12.56厘米;12.56平方厘米2. 【答案】7850平方厘米3. 【答案】18.84厘米4. 【答案】2.512;5.0245. 【答案】12.286. 【答案】127. 【答案】35;9258. 【答案】10009. 【答案】31.410. 【答案】18.8411. 【答案】扇;1:212. 【答案】D13. 【答案】D14. 【答案】D15. 【答案】C16. 【答案】A17. 【答案】C18. 【答案】1小时=60分钟,27×(20÷60)=9厘米.19. 【答案】100÷(3.14×2.5)=约12.7个,所以能做12个.20. 【答案】水池面积为:3.14×82=200.96m2,水池和道路总面积为:3.14×(8+2)2=314m2,则道路面积为:314−200.96=113.04m2.21. 【答案】S阴影=S1+S2=2×4+[4×6−2×(4×4−14π×42)]=8+17.12=25.12(cm2).22. 【答案】12×3×4=12×5×r,解得r=125,S阴影=12×3×4−14π×(125)2=6−14π×14425=1.4784(cm2).23. 【答案】(1) 滚动一次A点所走过的路程为23π厘米,两次是43π厘米,三次是43π厘米,四次是2π厘米.(2) 25次是以343π厘米.24. 【答案】23.14平方厘米.。
沪教版数学六年级上册4.4《扇形的面积》教学设计一. 教材分析《扇形的面积》是沪教版数学六年级上册第4章的一部分,主要介绍了扇形的面积计算方法。
本节内容是在学生掌握了圆形的基础上进行的,是学生对几何图形学习的进一步拓展。
本节课的内容对于学生来说是比较抽象的,需要通过实例和操作来帮助学生理解和掌握。
二. 学情分析六年级的学生已经具备了一定的几何图形知识,对于圆形有一定的了解。
但是,对于扇形的面积计算方法,学生可能初次接触,需要通过实例和操作来帮助学生理解和掌握。
在教学过程中,教师需要关注学生的学习兴趣,通过生动有趣的实例和操作,激发学生的学习兴趣,帮助学生理解和掌握扇形的面积计算方法。
三. 教学目标1.知识与技能:学生能够理解扇形的面积概念,掌握扇形的面积计算方法,能够运用扇形的面积计算方法解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养学生的空间想象能力、数学思维能力和问题解决能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,增强对数学学习的信心。
四. 教学重难点1.重点:学生能够理解扇形的面积概念,掌握扇形的面积计算方法。
2.难点:学生能够运用扇形的面积计算方法解决实际问题。
五. 教学方法1.情境教学法:通过生动有趣的实例,引发学生的学习兴趣,帮助学生理解和掌握扇形的面积计算方法。
2.操作教学法:通过学生的动手操作,培养学生的空间想象能力和数学思维能力。
3.问题解决法:通过解决实际问题,帮助学生理解和掌握扇形的面积计算方法,提高学生的问题解决能力。
六. 教学准备1.教具:多媒体课件、扇形模型、计算器等。
2.学具:学生手册、练习本、计算器等。
七. 教学过程1.导入(5分钟)教师通过多媒体课件展示一些生活中的扇形物体,如扇子、风扇等,引导学生关注扇形物体,激发学生的学习兴趣。
同时,教师提出问题:“你们知道这些扇形物体的面积是如何计算的吗?”引发学生的思考。
圆与扇形周长和面积的计算一、圆的定义:圆是到定点的距离等于定长的点的集合,这个定点叫圆心,定长叫圆的半径。
二、与圆有关的概念弦:连接圆上任意两点的线段叫做弦。
直径:经过圆心的弦叫直径。
弧:圆上任意两点间的部分叫弧。
半圆:圆上任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
优弧与劣弧:大于半圆的弧叫优弧,小于半圆的弧叫劣弧。
圆心角:顶点在圆心的角叫圆心角。
圆周角:顶点在圆周上,并且两边都和圆相交的角叫做圆周角。
三、圆的性质圆的对称性:圆既是轴对称图形又是中心对称图形,经过圆心的每一条直线都是它的对称轴,圆心是它的对称中心,围绕圆心旋转任何一个角度,都能和它原来的图形重合。
四、与圆有关的计算 1、 圆的周长与弧长公式圆的周长:2C r π=弧长:180nl r π=(n 为圆心角度数) 圆的周长÷直径=圆周率(圆周率是个无限不循环小数,近似等于3.14,即 3.14π≈)。
2、 圆面积公式与扇形面积公式圆的面积:2S r π=214d π=.第五讲 圆与扇形扇形面积:213602n S r lr π==扇形(扇形的半径为r ,圆心角为n ,弧长为l ).【前铺1】 请说出日常生活中你所知道的圆或扇形的物体。
(至少说出5种)【前铺2】 一头驴被栓在磨盘旁边一直走,它走的线路是一个什么图形?温馨提醒:本讲除题目中有特殊说明外,π取3.14【例题1】 (1)一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)(2)一辆自行车车轮的半径是0.33米,车轮滚动一周自行车前进多少米?(得数保留两位小数)(3)一块长方形木板,长6分米,宽4分米,截出一个最大的圆,那么这个圆的周长为 分米;(4)已知小圆的半径是大圆半径的13,大圆的周长是12π,则小圆的周长是____【例题2】 (1)一个圆的周长为6.28厘米,则该圆的面积为多少平方厘米?(2)把一根长25.13厘米的铁丝围成一个圆(接头处共0.01厘米),这个圆的面积是多少?(3)一个圆形花池,池边周围栏杆长50.24米,则该花池的底面积是______平方米(4)圆的半径从6厘米减少到4厘米,面积减少 平方厘米;【例题3】 (1)将一根长10厘米的绳子绕一根吸管10圈,还余下0.58厘米,这根吸管的外直径是 毫米;(2)大圆半径是小圆的1.5倍,大圆面积比小圆面积大10平方厘米,大圆面积是 平方厘米;(3)一张三角形铁片与一张半径是50毫米的圆形铁片的面积相等,已知三角形铁片的底边长250毫米,则这个三角形在这条底边上的高是毫米;(4)有相同周长的长方形、正方形和圆,它们的面积从大到小是。
章节测试题1.【答题】已知扇形的半径为,圆心角的度数为,则此扇形的弧长为______ .【答案】4π【分析】根据弧长的计算公式解答即可.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为:=4πcm.故答案为:4π.2.【答题】已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是______cm2(结果保留π).【答案】8π【分析】根据圆锥侧面积的计算公式解答即可.【解答】解:底面圆的半径为2,则底面周长,侧面面积故答案为:3.【答题】一个底面直径是80,母线长为的圆锥的侧面展开图的圆心角的度数为______ 。
【答案】160°【分析】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形的弧长等于圆锥的底面周长.【解答】设圆锥的侧面展开图的圆心角度数为n°,∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴=80π,解得:n=160.故答案为:160°.4.【答题】已知圆锥底面半径为,高为,则它的侧面展开图的面积为 ______ .【答案】60π【分析】根据圆锥侧面积的计算公式解答即可.【解答】根据示意图可计算:,底圆的周长 = ;所以扇形=.5.【答题】若扇形的半径为3,圆心角120,为则此扇形的弧长是______.【答案】2π【分析】根据弧长的计算公式解答即可.【解答】根据弧长公式可得:=2π,故答案为:2π.6.【答题】圆锥的底面周长是4πcm,母线长9cm,则它的侧面展开图的圆心角的度数为______.【答案】80°【分析】根据扇形的计算公式解答即可.【解答】∵圆锥的底面周长是4πcm,母线长9cm,∴圆锥的侧面展开所得扇形的半径为9cm,弧长为4πcm,设侧面展开图的圆心角的度数为,则,解得:.故答案为;80°.7.【答题】圆心角为160°的扇形的半径为9cm,则这个扇形的面积是______cm2.【答案】36π【分析】根据扇形面积的计算公式解答即可.【解答】8.【答题】如图,在△ABC中,AB=AC=5,CB=8,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A. -24B. 25π﹣24C. 25π﹣12D. -12【答案】D【分析】设以AB、AC为直径作半圆交BC于D点,连AD,根据直径所对的圆周角为直角得到AD⊥BC,再根据勾股定理计算出AD,然后利用阴影部分面积=半圆AC的面积+半圆AB的面积-△ABC的面积计算即可.【解答】解:设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=4,∵AB=AC=5,∴AD=3,∴阴影部分面积=半圆AC的面积+半圆AB的面积-△ABC的面积=π×()2-×8×3=π-12选D.9.【答题】如图,正六边形ABCDEF是半径为2的圆的内接六边形,则图中阴影部分的面积是()A.B.C.D.【答案】A【分析】连接CO,DO,可知△OCD内的弓形的面积等于扇形OCD的面积-△OCD的面积.【解答】解:连接CO,DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)==.选A.10.【答题】如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y 轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为()A.B.C.D.【答案】D【分析】图形的整体面积为S扇形BAA′+S△A′BC′,空白部分的面积为S扇形BCC′+S△ABC,S△A′BC′=S△ABC.【解答】解:因为点O为AB的中点,所以OC=OA=OB=2,BC=.由旋转的性质可知,A′B=AB=2OB=4,所以∠AOA′=60°,∠CBC′=60°,阴影部分的面积为:S扇形BAA′+S△A′BC′-(S扇形BCC′+S△ABC)=S扇形BAA′-S扇形BCC′=.选D.11.【答题】右图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A. 5πcm2B. 10πcm2C. 15πcm2D. 20πcm2【答案】B【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解::∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴△ABO与△CDO的面积的和=△AOD与△BOC的面积的和,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π.选B.12.【答题】如图,在半径为3,圆心角为90°的扇形ACB内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A.B.C.D.【答案】B【分析】阴影部分不是一个规则图形,不能直接求,观察图形之间的关系,把阴影部分的面积转化为以C为圆心,AC长为半径的圆心角为90°的扇形的面积减去直角△ACD的面积.【解答】解:由图形可知,阴影部分的面积=××32-×32=.选B.13.【答题】如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为()cm2(结果保留π)A.B.C.D.【答案】C【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,∴△COW≌△ABW(AAS),∴图中阴影部分面积=S扇形OBC=,选C.14.【答题】如图,⊙O的半径为6,四边形内接于⊙O,连结OA、OC,若∠AOC=∠ABC,则劣弧AC的长为()A.B. 2πC. 4πD. 6π【答案】C【分析】由圆周角定理得∠AOC=2∠ADC,圆内接四边形的性质可得∠ADC+∠ABC=180°,进而求出∠AOC的度数,然后根据弧长公式求解即可. 【解答】解:∵∠AOC与∠ADC所对的弧相同,∴∠ADC=∠AOC,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=∠AOC+∠ABC=180°.又∵∠AOC=∠ABC,∴∠AOC+∠AOC=180°∴∠AOC=120°.∵⊙O的半径为6,∴劣弧AC的长为:.选C.15.【答题】圆锥母线长为10,其侧面展开图是圆心角为216°的扇形,则圆锥的底面圆的半径为()A. 6B. 3C. 6πD. 3π【答案】A【分析】本题主要考查圆锥侧面展开图的知识和圆锥侧面面积的计算;正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.【解答】解:设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm, ,解得:r=6,选A.16.【答题】已知圆O的半径是3,A,B,C 三点在圆O上,∠ACB=60°,则弧AB的长是()A. 2πB. πC. πD. π【答案】A【分析】先根据同弧所对的圆心角是其所对圆周角的2倍求出∠AOB的度数,再根据扇形的弧长公式计算.【解答】解:如图,∵∠AOB与∠ACB对的弧相同,∠ACB=60°,∴∠AOB=2∠ACB=120°,∴.选A.17.【答题】小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A. 120πcm2B. 240πcm2C. 260πcm2D. 480πcm2【答案】B【分析】根据圆锥侧面积的计算公式解答即可.【解答】圆锥的侧面积=×2π×10×24=240π(cm2),所以这张扇形纸板的面积为240πcm2选B.18.【答题】已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A. 180°B. 120°C. 90°D. 60°【答案】C【分析】根据扇形面积的计算公式解答即可.【解答】根据题意得,,解得:n=90,选C.19.【答题】如图.在△ABC中,∠ABC=90°,∠BAC=30°,AC=2,将△ABC绕点A逆时针旋转至△AB1C1,使AC1⊥AB,则BC扫过的面积为()A.B.C.D.【答案】B【分析】本题考查了三角形、扇形的面积,旋转的性质,勾股定理等知识点的应用,解答此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积.【解答】解:在△ABC中,∠ABC=90°,∠BAC=30°,AC=2,∴BC=1,AB=.∵将△ABC绕点A逆时针旋转至△AB1C1,使AC1⊥AB,∴△ABC的面积等于△AB1C1的面积,∠CAB=∠C1AB1,AB1=AB=,AC1=AC=2,∴∠BAB1=∠CAC1=60°,∴BC扫过的面积S=S扇形CAC1+S△ABC﹣S扇形BAB1﹣S△AB1C1=+××1﹣﹣××1=.选B.20.【答题】如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧CD是以点B为圆心、BC长为半径的弧,则阴影部分的面积为()A. 1cm2B. cm2C. 2cm2D. πcm2【答案】B【分析】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.【解答】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=AD.∵∠A=60°,∴△ABD是等边三角形,∴∠ABD=60°.又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形CBD﹣(S扇形BAD﹣S△ABD)=S△ABD=×2×(×2)=cm2选B.。
沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕圆和扇形的面积【例1】求图中暗影局部扇形的面积〔单位:cm〕【例2】〔1〕一扇形的面积是2,半径是6cm,求圆心角的度数;〔2〕一扇形的面积是平方米,圆心角是120o,求扇形所在圆的半径.例3、求图中暗影局部的面积〔精准到〕1/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕例4、如图,是一个半圆旋转必定的角度后形成的.求半圆旋转的角度..假定图中暗影局部的面积恰巧相等【根基训练】一、判断题1、正方形的周长和圆的周长相等,那么面积也相等.〔〕2、两个面积相等的圆必能重合〔〕3、圆的周长越大,面积也越大〔〕.4、圆的一局部就是扇形〔〕5、两个扇形,圆心角越大,其面积必然越大〔〕6、圆的面积必定大于扇形的面积〔〕二、填空题2/131、圆的半径是4分米,那么半圆的面积是〔〕平方分米.2、圆的直径为4厘米,那么圆的周长为〔〕厘米,圆的面积为〔〕平方厘米.3、如图,大圆的半径R=20厘米,小圆的半径r=10厘米,那么S阴=〔〕平方厘米.〔第3题〕4、在边长为10厘米的正方形中截取一个最大的圆,剩下的面积为〔〕平方厘米.5、一个圆的半径从3厘米扩大到7厘米,它的面积增添了〔〕平方厘米.6、如图,暗影局部的弧长是〔〕,面积是〔〕.〔结果保留〕〔第6题〕7、假定一个扇形面积是它所在圆的面积的5,那么这个扇形的圆心角是〔〕度. 188、将一张圆形纸片剪开乘成A、B、C三个扇形,A的面积比B的面积小1,B的面积比C的面积小1,那么此中面积最小的扇形的圆心角是〔3〕度.43/139、假定一个圆心角是36o的扇形面积是8平方厘米,那么和扇形的半径相等的圆的面积是〔〕平方厘米.三、解答题1、求以下列图中暗影局部的面积:2、两个扇形,它们的圆心角相等,半径之比为3:1,求两个扇形的面积之比.4/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕3、AB弧的长是,圆心角是150o,求扇形的面积.4、如图,一个涵洞的横截面的上半局部是半圆,下半局部是长方形〔单位:m〕.试求这个涵洞的截面的面积.5、设r表示扇形所在圆的半径,n表示圆心角的度数,l表示扇形的圆心角所对的弧长,S 表示扇形的面积.〔1〕:r=24cm,n=45o,n=36o,求S与l. ,求S与l;〔2〕:r=100nm5/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕〔2〕:l 1.57,,求n与S;〔4〕:,n=120o,求r与l.6、用两根长都是米的铁丝,分别围成一个正方形和一个圆,哪个面积比较大,大多少?【能力提升题】一、填空题1、假定一个圆的半径扩大到本来的3倍,那么它的周长扩大到本来的〔〕倍,面积扩大到原来的〔〕倍.6/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕2、假定一个圆的半径减小为本来的1,那么它的周长减小为本来的〔〕,面积减小为本来的3〔〕〔填“几分之几〞〕3、假定大圆周长比小圆周长多它的2倍,那么小圆面积比大圆面积少小圆面积的〔〕倍.4、一个大圆的半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,那么小圆面积是〔〕平方厘米.5、假定扇形的半径不变,圆心角扩大到本来的2倍,那么面积是本来的〔〕倍.6、假定扇形的圆心角不变,半径扩大到本来的2倍,那么面积是本来的〔〕倍.7、假定一个扇形的半径是2cm,圆心角所对的弧长是8cm,那么这个扇形的面积为〔〕cm2.8、在长为6厘米、宽为4厘米的长方形铁皮上,最多可剪下〔〕个半径是1厘米的圆.二、解答题1、如图:扇形的半径是10分米,弧长是分米,求扇形的面积.2、某班有40名学生,此中只定阅一份刊物的有12人,两份的有18人,定阅两份以上的有6人,其他是未订的,请分别求出他们各占全班学生的百分比,并画出扇形统计图.7/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕3、在边长为10米的正方形中,有一个直径为20厘米的圆形铁片在挪动,求铁片在正方形内随意挪动后不可以抵达局部的图形的面积.4、如图,图中长方形面积和圆面积相等,圆周长为,求暗影局部的面积5、在一个面积为平方米的圆形花坛四周铺成一条米的环形小道.试问这条环形小道的面积是多少平方米?8/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕6、求图中暗影局部的面积〔单位:cm〕7、两个大小相等的正方形,此中一个正方形中有一个面积最大的大圆,另一个正方形中有最大的四个面积相等的小圆,那么大圆面积与四个小圆的面积之和的大小关系如何?9/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕8、一块空地要铺草皮,以下列图的暗影局部,按每铺1平方米草皮花费50元计算,共需多少元?9、设计一个商标图案如图暗影局部所示,在矩形ABCD中,AB=2BC且AB=8cm,以点A为圆心、AD长为半径作圆,交BA延伸线于点E,求商标图案的面积.10/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕【思想拓展题】1、如图,:在矩形NCHE中,AB=BC,BAC90,BC=20cm,求暗影局部的面积.2、以下列图,直角梯形的面积是54平方厘米,暗影局部的面积是〔〕平方厘米3、以下列图,半径为10厘米、圆心角的度数为90度的扇形中,分别以两条半径的中点E和F为圆心,以扇形半径的1长为半径画两个半圆交于D,图中暗影局部的面积是多少平2方厘米?11/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕4、以下列图:有八个半径为1厘米的小圆,用它们圆周的一局部连成一个花瓣图形,图中墨点是这些圆的圆心,这个花瓣图形的面积是多少平方厘米?5、如图:一个直角三角形ABC,AC长4,BC长3,AB长5,绕着C点,在同一平面上,这个直角三角形旋转一周后,AB边扫过的范围是什么图形?面积是多少?12/13沪教版〔五四制〕六年级上册圆和扇形面积导教案〔无答案〕6、如图,正方形ABCD的边长为4cm,以点A为圆心、AB为半径画弧 BD,又分别以BC和CD为半径画半圆,求图中暗影局部的面积.7、草场上有一个长20米,宽10米的封闭着的羊圈,在羊圈的一角用长30米的绳索拴着一只羊〔见以下列图〕,这只羊可以活动的范围有多大?13/13。
圆和扇形的面积【知识要点】1.圆的面积 S=π2r2.环形的面积=大圆的面积-小圆的面积 S=π(2R -2r )3.扇形面积公式S 扇=360n π2r =12lr 4.要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补.【典型例题】例1(1) 以下说法中不正确的……………………………………………………………………()(A )扇形的面积与圆心角和半径有关系(B )扇形的圆心角不变,半径扩大2倍,面积扩大4倍(C )扇形的半径不变,圆心角扩大2倍,面积扩大2倍(D )扇形半径扩大2倍,圆心角扩大3倍,面积就扩大6倍(2) 以下说法中正确的是……………………………………………………………………()(A )一个扇形的半径不变,圆心角扩大n 倍,所对的弧长也扩大n 倍(B )通过一个圆心的线段一定是这个圆的直径(C )一个半圆面,半径为r ,它的周长为r r +π(D )圆心角相等,所对的弧也相等(3)两个半径相等的扇形,其中一个扇形的弧长是另一个扇形弧长的31,那么这个扇形的圆心角度数是另一个扇形圆心角的…………………………………………………………()(A )3倍(B )31(C )9 (D )91 (4)扇形的半径是100厘米,圆心角是18º,下列计算正确的是…………………………() (A )厘米14.3=l (B )21570厘米=S(C )所在圆的面积是31400厘米2(D )扇形的周长是231.4厘米(5)有相同周长的长方形,正方形和圆,她们的面积大小关系是………………………()(A )S 长方形> S 正方形>S 圆(B )S 正方形>S 长方形>S 圆(C )S 圆>S 长方形>S 正方形(D )S 圆>S 正方形>S 长方形(6)一个圆半径增加2cm ,则这个圆………………………………………………………()(A )周长增加4cm (B )周长增加4πcm(C )面积增加4 cm 2(D )面积增加4πcm 2羊8厘米例2 已知一个半圆环形零件的外圆直径是100厘米,内圆直径是60厘米,求这个半圆环形零件的面积。
数学六年级(上) 第四章 圆和扇形4.3圆的面积(1)一、填空:1.设圆的半径为r ,面积为S ,那么圆的面积S= 。
2.设圆的直径为d ,面积为S ,那么圆的面积S= 。
3.设圆环的内圆半径为r 1,外圆半径为r 2,环形面积S = 。
4. 圆的半径扩大为原来的3倍,直径就扩大为原来的 倍,周长就扩大为原来的 倍,面积就扩大为原来的 倍。
5.一个圆形桌面的直径是2米,它的面积是 平方米。
6.用圆规画一个周长31.4厘米的圆,圆规两脚尖之间的距离应是 厘米,画出的这个圆的面积是 平方厘米。
7.大圆半径是小圆半径的5倍,大圆周长是小圆周长的 倍,小圆面积是大圆面积的 。
8.圆的半径增加31,圆的周长增加 ,圆的面积增加 。
9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长长10厘米,这个长方形的面积是 平方厘米。
10.在一个面积是36平方厘米的正方形内画一个最大的圆,这个圆的面积是 平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是 平方厘米。
11.大圆半径是小圆半径的2倍,大圆面积是84.76平方厘米,则小圆面积为 平方厘米。
12.大圆半径是小圆半径的3倍,大圆面积比小圆面积多48平方厘米,小圆面积是 平方厘米。
13.小华量得一根树干的周长是37.68厘米,这根树干的横截面大约是 平方厘米14.一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是 4米。
这只羊可以吃到 平方米地面的草。
15.一根1.8米长的铁丝,围成一个半径是25厘米的圆,(接头处不计),还多 米,围成的圆面积是 。
16.从一个长7分米,宽4分米的长方形木板上锯下一个最大的圆,这个圆的面积是 。
17.大圆的半径等于小圆的直径,大圆的面积是小圆面积的 倍。
18.用三根同样长的铁丝分别围成一个长方形、一个正方形、和一个圆,其中 面积最小, 面积最大。
二、选择题19. 如果一个圆的直径与正方形边长相等,那么 ( )A .圆的面积大于正方形的面积 B. 圆的面积等于正方形的面积C. 圆的面积小于正方形的面积D. 不能确定20. 如果圆的半径扩大为原来的5倍,那么他的面积扩大为原来的 ( )A. 5倍B. 10倍C. 15倍D. 25倍21. 如果圆的周长等于正方形的周长,那么 ( )A .圆的面积大于正方形的面积 B. 圆的面积等于正方形的面积C. 圆的面积小于正方形的面积D. 不能确定22. 半径为2厘米的圆的面积与边长为2厘米的正方形的面积之比为 ( )A. 1:1B. 2:1C. 1:πD. 4:π23. 下列叙述,错误的是 ( )A. 周长是所在圆直径的π倍B. 通过圆心的线段,叫做圆的直径C. 任何圆的圆周率都是πD. 同一个圆内,半径是直径的一半24. 下列叙述,正确的是 ( )A. 半径是 2厘米的圆,它的周长和面积相等B. 两个圆的面积相等,则两个圆的半径一定相等C. 圆的周长是6.28分米,那么半圆的周长是3.14分米D. 所有的直径都相等,所有的半径也都相等三、解答题25.求圆的面积。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
18.当一个圆的半径增加a厘米时,它的周长就增加2a厘米;当一个圆的直径增加a厘米时,它的周长就增加a厘米。
19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
21.圆心角:顶点在圆心上,角的两边与圆周相交的角叫圆心角如左图,∠AOB 的顶点O是圆O 的圆心,AO 、BO 交圆O 于 A 、B两点,则∠ AOB 是圆心角。
①顶点是圆心;②两条边都与圆周相交。
扇形:是由圆心角的两条半径和圆心角所对的弧围成的图形。
n 2 r 或n d扇形弧长公式:L=360360扇形的面积公式:nS=360 r2(n为扇形的圆心角度数,r 为扇形所在圆的半径)22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
23.有 1 一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有 2 条对称轴的图形是:长方形有 3 条对称轴的图形是:等边三角形有 4 条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
24.直径所在的直线是圆的对称轴。
25、倍表1π 3.1411π34.5421π65.9462π113.04162π803.842π 6.2812π37.6822π69.0872π153.86172π907.463π9.4213π40.8223π72.2282π200.96182π1017.364π12.5614π43.9624π75.3692π254.34192π1133.545π15.715π47.125π78.5102π314202π12566π18.8416π50.2426π81.64112π379.94212π1384.747π21.9817π53.3827π84.78122π452.16222π1519.768π25.1218π56.5228π87.92132π530.66232π1661.069π28.2619π59.6629π91.06142π615.44242π1808.6410π31.420π62.830π94.2152π706.5252π1962.5特征识别:例析:例 1: 某种潜水仪器安装了一个潜望镜,这个潜望镜最远可以观察到 300 米远的距离,观察角度为 270o ,那么这种潜望镜的监控面积是多少?例 2:学校在一块面积为 100 m 2的正方形草地上种植鲜花,种植面积尽量大的围 成一个圆形,那么剩余部分的面积是多少?(取π =3.14,保留 2 位小数)例 3:如图所示,这是一所学校学生参加兴趣活动的扇形统计图1)体育类学生所在的扇形的圆心角是多少? 2)其他活动占百分之几?例 4:学习了圆这章后,小明、小丽和小杰对圆产生了兴趣,小丽用 4 条 1 米长的细绳围成了 4个圆,小明用 2条 2米长的绳子围成了 2个圆,小杰用 1条4米 长的绳子围成了一个圆,每个人都觉得自己围出的图形面积大。
2016年六年级圆和扇形的数学测试
班级:________________ 姓名:________________ 学号:_____________
一、填空题(每小题3分,满分36分)
1、圆的直径为30,则圆的周长= .
2、圆半径为2cm ,那么180°的圆心角所对的弧长l = cm.
3、如果圆的半径r =12cm ,那么18°的圆心角所对的弧长l = cm.
4、把边长为2分米的正方形剪成一个最大的圆,则这个圆的面积= dm 2.
5、大圆的半径是小圆的半径的2倍,则大圆面积是小圆面积的 倍.
6、一个半圆面的半径是r ,则它的面积是 .
7、圆的面积扩大到原来的9倍,则它的半径扩大到原来的 倍.
8、一个圆的半径从2cm 增加到3cm ,则周长增加了 cm.
9、120°的圆心角所对的弧长是15.072米,弧所在的圆的半径是 米.
10、一个扇形面积是它所在圆面积的6
1,这个扇形的圆心角是 度. 11、一个圆环的外半径是5cm ,内半径是3cm,这圆环的面积是 cm 2.
12、把直径为18厘米的圆等分成9个扇形,每个扇形的周长是 厘米.
二、选择题(每题3分,满分12分)
13、下列结论中正确的是………………………………………………( )
(A)任何圆的周长与半径之比不是一个常数;
(B)任何两个圆的周长之比等于它们的半径之比;
(C)任何两个圆的周长之比是一个常数;
(D)称圆的周长与半径之比为圆周率.
14、下列判断中正确的是………………………………………………( )
(A)半径越大的扇形的弧越长;
(B)所对圆心角越大的扇形的弧越长;
(C)所对圆心角相同时,半径越大的扇形的弧越长;
(D)半径相等时,无论圆心角怎么改变扇形的弧长都不会改变.
15、下列判断中错误的是………………………………………………( )
(A)两圆心角相等,所对弧也相等的两扇形面积相等
(B)面积相等的两个圆直径一定相等
(C)周长相等的两个扇形,面积一定相等
(D)不管圆的大小,周长除以直径商是π
16、一个圆的半径增加2cm ,则这个圆………………………………( )
(A)周长增加4cm ; (B)周长增加π4cm ; (C)面积增加4cm 2; (D)面积增加.π4cm 2.
三、简答题(17~20每题6分,21~24每题7分,满分52分)
17、半径为6㎝的扇形面积为18.84cm 2,它的圆心角是多少度?
18、如图,一个圆环的外圆半径为4cm ,内圆半径为3cm ,试计算圆环的面积.
19、如图,半径为6的圆恰容于一个正方形内,试用 表示正方形内圆以外部分的面积.
20、某建筑物上大钟的分针长1.2米,时针长0.9米,试计算一小时分针和时
针的针尖运动的弧长.
21、已知正方形边长为2,分别以正方形两个对角顶点为圆心,以边长为
半径作两段圆弧,求两弧所夹叶形部分的面积.
22、已知C 、D 两点在以AB 为直径的半圆周上且把半圆三等分,若已知AB 长为10,求阴 影部分的面积.
23、如图,四个圆的半径都是1,四个圆的圆心恰好是正方形的四个顶
点,求阴影部分面积.
24、小红用4根各长1米的绳子围成4个圆,小蓝用2根各长2米的绳子围成2个圆,小白 用1根长4米的绳子围成1个圆,试求他们围得图形的面积之比.
B A
C D。