六年级下册数学试题-15讲 圆和扇形(含答案)全国通用
- 格式:doc
- 大小:935.98 KB
- 文档页数:13
北师大版数学六年级下册提升卷巧求半圆、圆环、扇形的周长和面积一、我会辨。
(对的在括号里画“√”,错的画“×”)(每题2分,共6分) 1.半圆的面积是整圆面积的一半,则半圆的周长也是整圆周长的一半。
() 2.用4个半径相等的圆心角都是45°的扇形一定可以拼成一个圆。
() 3.圆的周长是直径的3.14倍。
()二、我会填。
(每空2分,共24分)1.一个扇形的圆心角是90°,它的面积是所在圆面积的();一个扇形的圆心角是45°,它的面积是所在圆面积的()。
2.一个圆的直径是10 cm,它的周长是()cm,圆周长的一半是()cm;一个半圆形的半径是 5 cm,这个半圆形的周长是()cm,面积是()cm2。
3.下图中,大半圆的半径是()cm,小半圆的半径是()cm。
4.一个圆环,内圆周长是 6.28 cm,环宽是1 cm,内圆半径是()cm,外圆半径是()cm。
5.钟面上的时针长5 cm,时针从6时走到9时,时针的针尖扫过的轨迹长()cm,时针扫过的面积是()cm2。
三、我会选。
(把正确答案前的字母填在括号里)(每题2分,共6分) 1.一个半圆形,半径是r,它的周长是()。
A.2πr B.πr C.πr+2r D.πr+r2.下面两幅图中阴影部分的面积相比,()。
A.A大B.B大C.一样大D.无法比较3.如图,沿半圆形草坪外围铺一条5 m宽的小路,小路的面积是多少平方米?列式正确的是()。
A.3.14×52÷2B.3.14×202÷2C.3.14×252÷2-3.14×202÷2四、按要求计算。
(共32分)1.计算下面各图形的周长。
(每题5分,共10分)2.计算下面阴影部分的面积。
(单位:cm)(每题5分,共10分)3.计算下面各图形的周长和面积。
(每题6分,共12分)五、我会应用。
(每题8分,共32分)1.在一个边长为16 cm的正方形铁片中,截去如图所示的2个半圆,求剩余铁片的面积。
六年级数学专题思维训练—圆与扇形1、分别以一个边长为2厘米的等边三角形的三个顶点为圆心,以2厘米为半径画弧,得到下图.那么,阴影图形的周长是厘米.(取3. 14)2、有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆绑在一起,其切面如下图所示,至少需要绳子分米.(取3.14)3、把同一段铁丝围成一个正方形后,又改围成一个圆形,发现按照面积公式得出的二者面积之比为4:5,那么在计算圆面积时,圆周率丌的取值为。
4、如下图所示,已知圆环的面积是141.3平方厘米,那么阴影部分的面积是平方厘米.(取3. 14)5、如下图所示,弧IFD与JED是分别以A、B为圆心、以AD、BD为半径的圆弧,已知AD1=DB=DC=4厘米,且AGDHB、AFC与BEC分别是三条直线段.线段IA、FG、CD、EH、JB都分别垂直于AB.请问图中阴影部分的面积是多少?(取)6、如下图所示的半圆的直径BC=8厘米,AB=AC,D是AC的中点,则阴影部分的面积是.(取3. 14)7、如下图所示,ABCD是边长为10厘米的正方形,且AB是半圆的直径,则阴影部分的面积是平方厘米.(取3. 14)8、下图中正方形ABCD及DCEG的面积均为64平方厘米,EFG则为一半圆,F是弧EFG的中点.请问阴影部分的面积为多少平方厘米?(3.14)9、半径为10、20、30的三个扇形如下图放置,是的倍,10、如下图所示,图中的曲线是用半径长度的比为2:1.5:o.5的6条半圆曲线连成的,问:涂有阴影的部分与未涂阴影的部分的面积比是多少?11、有三个同心圆,它们的半径之比是3:4:5,如果大圆的面积是100平方厘米,那么中圆与小圆所构成的圆环的面积是A.20平方厘米 B.28平方厘米 C.36平方厘米 D.60平方厘米12、下图是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%.问:大圆的面积是多少?13、下图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形.求五边形内阴影部分的面积. =3. 14)14、如下图所示,已知圆心是O,半径r=9厘米,∠1 =∠2=15°,那么阴影部分的面积是平方厘米。
人教版六年级下册数学第五单元《圆的周长计算及应用》专项练习(含答案)一、认真审题,填一填。
(每小题3分,共18分)1.战国时期《墨经》一书中记载:“圆,一中同长也。
”表示圆心到圆上各点的距离都相等,即( )都相等。
2.如图,圆向前滚动了一周,圆滚动了( )cm,这个圆的周长是( )cm。
3.要画一个周长是25.12 cm的圆,圆规的两脚叉开的距离应是( )cm。
4.一块正方形铁皮,周长是40分米,要剪下一个最大的圆,这个圆的直径是( )分米。
5.武汉长江公铁隧道是武汉市一条公路、地铁两用过江通道。
圆形隧道管片直径约15 m,是目前国内直径最大的江底隧道。
圆形隧道管片的周长约是( )m。
(π取3)6.一个半圆形鱼池的周长是51.4 m,它的半径是( )m。
二、火眼金睛,辨对错。
(每小题4分,共12分)1.大小不同的两个圆,若两个圆的周长都增加1米,各自半径增加的长度相同。
( )2.小圆和大圆的半径之比是2:3,它们的直径之比是3:2。
( )3.一个圆的半径扩大到原来的2倍,它的周长也扩大到原来的2倍。
( ) 三、仔细推敲,选一选。
(每小题3分,共15分)1.大小不同的两个圆,它们的半径各增加2 cm,和原来的圆相比较,哪个圆的周长增加得多?( )。
A.大圆B.小圆C.同样多2.下图中的阴影部分是扇形的是( )。
3.如图,图形的周长是( )m。
A.18.71B.15.71C.20.42D.23.424.圆周率是圆的周长与直径的比值。
如果下图中线段AE代表一个圆的周长,那么这个圆的直径可能是( )。
A.AB B.AC C.CD5.下面关于半圆形的周长,说法不正确的是( )。
A.是这个圆周长的一半B.是这个圆周长的一半再加上一条直径C.是这个圆周长的一半再加上两条半径四、细心的你,算一算。
(共18分)1.求阴影部分的周长。
(每小题6分,共12分)(1) (2)2.长方形的周长是36 cm,求一个圆的周长。
【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】【练习7】【练习8】【练习9】【练习10】、相交于点;已知三角形与三角平方厘米,那么梯形的面积是平方厘【练习11】【练习12】,问阴影部分面积为多少?【练习13】【练习14】,三角形的面积为,那么三【练习15】【练习16】【练习17】【练习18】【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.【练习23】【练习24】【练习25】【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm【练习34】计算下面各圆锥体积(单位:厘米)(取)【练习35】【练习36】【练习1】【练习2】几何四边形一半模型等积变形【练习3】【练习4】,所以【练习5】【练习6】【练习7】【练习8】【练习9】:,所以【练习10】根据梯形中的蝴蝶模型(平方厘米),方厘米),故总面积为(平方厘米).蝴蝶模型【练习11】,根据蝴蝶模型和一半模型求出每一块的面积如图上标几何四边形蝴蝶模型基本梯形蝴蝶模型【练习12】如图,梯形面积为,四边形连接,在梯形中,;在梯形中,,并且四边形面积为,所以梯形空白部分的面积是,所以阴影的面积是【练习13】【练习14】.【练习15】【练习16】.【练习17】【练习18】平方厘米.【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.可以看成三角形的“假高”(都是从顶点到底边连线,且两条“高”共线),【练习23】【练习24】【练习25】,【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm(3)(4)【练习34】【练习35】【练习36】圆柱与圆锥圆柱与圆锥基本概念运用。
1.⑴圆:平面上到定点的距离等于定长的所有点所组成的图形叫做圆。
定点称为圆形,定长称为半径。
⑵半径:连接圆心和圆上任意一点的线段叫做半径;通常用字母r 表示;同圆或等圆的半径相等 。
⑶弦:连接圆上任意两点的线段叫做弦。
⑷直径:通过圆心并且两端都在圆上的线段叫做直径;直径常用字母d 表示;圆中最长的弦为直径⑸弧:圆上任意两点间的部分叫做圆弧,简称弧;大于半圆的弧为优弧,小于半圆的弧为劣弧。
⑹扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分,我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周的几分之几。
⑺圆心角:顶点在圆心的角叫做圆心角。
⑻圆周角:顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
2.圆的性质:圆既是轴对称图形又是中心对称图形,经过圆心的每一条直线都是它的对称轴,圆心是的对称中心,围绕圆心旋转任何一个角度,都能和它原来的图形重合3.⑴圆的周长:L =2πr ;扇形的弧长:l =2πr ×360n(n 表示扇形圆心角的度数); ⑵圆的面积:S =πr 2; 扇形的面积:S =πr 2×13602n lr (n 表示扇形圆心角的度数)。
4.弓形:弓形一般不要求周长,主要求面积。
一般来说,弓形面积=扇形面积-三角形面积。
(除了半圆)5.常用的思想方法:⑴转化思想(复杂转化为简单,不熟悉的转化为熟悉的); ⑵等积变形(割补、平移、旋转等); ⑶借来还去(加减法);⑷外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的关系)。
平面几何之圆与扇形(上)板块一、圆与扇形的面积与周长1.圆的半径是6厘米,它的周长是()厘米,面积是( )平方厘米。
2.一个半圆形,半径是3厘米,周长是( )厘米,面积是( )平方厘米。
3.一张圆桌面的周长是376.8厘米,要在它上面配一块圆形玻璃,这块圆形玻璃的面积是( )平方厘米。
六年级数学圆扇形圆环试题答案及解析1.(3分)半径是2米的圆的周长与圆的面积相等..(判断对错)【答案】错误【解析】首先理解圆的周长和面积的意义,圆的周长是圆一周的长度.圆的面积是指圆围成的平面的大小.它们不是同类量无法进行比较.由此解答.解:圆周长是:2×3.14×2=12.56(米);圆面积是:3.14×22=3.14×4=12.56(平方米);这个圆的周长与面积在数值上是相等的,但是单位不同,所以圆的周长和面积它们不是同类量无法进行比较.故答案为:错误.点评:此题考查的目的是理解圆的周长和面积的意义,明确:圆的周长和面积不是同类量无法进行比较,只有同类量才能比较大小.2.(2分)一个圆的周长是L的半圆,它的半径是()A.L÷2πB.L÷πC.L÷(π+2 )D.L÷(π+1)【答案】C【解析】半圆的周长=πd÷2+d=πr+2r=(π+2)r,由此即可解答.解:根据题干分析可得:它的半径r=,故选:C.点评:此题考查了半圆的周长公式的灵活应用.3.如图,在时钟的表盘上任意作个的扇形,使得每一个扇形都恰好覆盖个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作个扇形将不能保证上述结论成立.【答案】见解析【解析】要在表盘上共可作出12个不同的扇形,且1~12中的每个数恰好被4个扇形覆盖.将这12个扇形分为4组,使得每一组的3个扇形恰好盖住整个表盘.那么,根据抽屉原理,从中选择9个扇形,必有个扇形属于同一组,那么这一组的3个扇形可以覆盖整个表盘.另一方面,作8个扇形相当于从全部的12个扇形中去掉4个,则可以去掉盖住同一个数的4个扇形,这样这个数就没有被剩下的8个扇形盖住,那么这8个扇形不能盖住整个表盘.4.如图,长方形的长是,则阴影部分的面积是多少.()【答案】3.44【解析】阴影部分的面积实际上是右上图阴影部分面积的一半,所以求出右上图中阴影部分面积再除以2即可.长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:所以左图阴影部分的面积等于平方厘米.5.用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【答案】8【解析】大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积,小圆面积,个小圆总面积,边角料面积(平方厘米).6.如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【答案】2.5【解析】由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于大圆面积减去一个小圆面积,再加上的小扇形面积(即小圆面积),所以相当于大圆面积减去小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的倍,那么阴影部分面积为.7.如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取)【答案】412【解析】所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么,又知四边形是平行四边形,所以,这样就可求出扇形的面积和为(平方厘米),阴影部分的面积(平方厘米).8.在桌面上放置个两两重叠、形状相同的圆形纸片.它们的面积都是平方厘米,盖住桌面的总面积是平方厘米,张纸片共同重叠的面积是平方厘米.那么图中个阴影部分的面积的和多少是平方厘米?【答案】72【解析】根据容斥原理得,所以(平方厘米)9.一个长方形的长为9,宽为6,一个半径为l的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少.(取3)【答案】1【解析】方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为;那么圆无法运动到的部分面积为方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为10.如图中,正方形的边长是,两个顶点正好在圆心上,求图形的总面积是多少?(圆周率取)【答案】142.75【解析】.11.如图所示,直角三角形的斜边长为10厘米,,此时长5厘米.以点为中心,将顺时针旋转,点、分别到达点、的位置.求边扫过的图形即图中阴影部分的面积.(取3)【答案】0.6775【解析】如图,顺时针旋转后,A点沿弧转到点,B点沿弧转到点,D点沿弧转到点.因为CD是C点到AB的最短线段,所以AB扫过的面积就是图中的弧与之间的阴影图形.(平方米),(平方米),所以,(平方米),我们推知(平方米).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?【答案】1【解析】对于这类问题,可以在初始时在小环上取一点,观察半径,如图⑴,当小环沿大环内壁滚动到与初始相对的位置,即滚动半个大圆周时,如图⑵,半径也运动到了与初始时相对的位置.这时沿大环内壁才滚动了半圈.继续进行下半圈,直到与初始位置重合,这时自身转了1圈,因此小铁环自身也转了1圈.(1)(2)对于转动的圆来说,当圆心转动的距离为一个圆周长时,这个圆也恰好转了一圈.所以本题也可以考虑小铁环的圆心轨迹,发现是一个半径与小铁环相等的圆,所以小铁环的圆心转过的距离等于自己的圆周长,那么小铁环转动了1圈.13.如图,枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位置.问:这枚硬币自身转动了多少圈?【答案】6【解析】当硬币在长方形的一条边之内滚动一次时,由于三个硬币的圆心构成一个等边三角形,所以这枚硬币的圆心相当于沿着半径为硬币2倍的圆旋转了.而硬币上的每一点都是半径等于硬币的圆旋转,所以硬币自身旋转了120°.当硬币从长方形的一条边滚动到另一条边时,这枚硬币的圆心相当于沿着半径为硬币2倍的圆旋转了.而硬币上的每一点都是半径等于硬币的圆旋转,所以硬币自身旋转了300º.长方形的外圈有12个硬币,其中有4个在角上,其余8个在边上,所以这枚硬币滚动一圈有8次是在长方形的一条边之内滚动,4次是从长方形的一条边滚动到另一条边.,所以这枚硬币转动了2160º,即自身转动了6圈.另解:通过计算圆心轨迹的长度,每走一个即滚动了一周.14.图中阴影部分的面积是,求圆环的面积.【答案】157【解析】设大圆半径为,小圆半径为,依题有,即.则圆环面积为:.15.如果半径为25厘米的小铁环沿着半径为50厘米的大铁环的外侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?【答案】3【解析】如图,同样考虑小圆的一条半径,当小圆在大圆的外侧滚动一周,即滚动了大圆的半周时,半径滚动了,滚动了一圈半,所以当小圆沿大圆外侧滚动一周时,小圆自身转了3圈.也可以考虑小圆圆心转过的距离.小圆圆心转过的是一个圆周,半径是小圆的3倍,所以这个圆的周长也是小圆的3倍,由于小圆的圆心每转动一个自身的周长时,小圆也恰好转了一圈,所以本题中小圆自身转了3圈.16.一共圆形花坛,直径是10米,在它的周围有一条宽2米的环形小路。
第二讲 几何之圆与扇形教学目标组合图形的面积计算,除了直线型面积计算“五大模型”,跟圆有关的曲线型面积也是得别重要的组成部分。
其中,尤以结合情境的曲线形面积计算为最常见考点。
教师版答案提示:纸的厚度为:(206)27-÷=(厘米),那么有70.04175÷=圈纸,中心的卷轴到纸用完时大约会转175圈;圆环的面积为:2210391ππ⨯(-)=,因为纸的厚度为0.4毫米,即0.04厘米,所以纸展开后的长度约为:910.0422757143.5ππ÷=≈厘米.利用“加、减”思想解答问题【例1】 如图,一个“月牙”形屏幕在屏幕上随意平行移动(不许发生转动也不越过屏幕边界),已知线段AB 是月牙外半圆弧的直径,长为2厘米。
初始时,A 、B 两点在矩形屏幕的一条边上。
屏幕的长和宽分别为30厘米和20厘米。
问:屏幕上“月牙”擦不到的部分的面积是多少平方厘米?(π取3)分析:由于“月牙”形屏幕在屏幕上只能平行移动(不许发生转动也不越过屏幕边界),所以它擦不到的地方只是屏幕的右上角和右下角两部分,如右下图中斜线所示区域,其面积为0.5平方厘米。
想 挑 战 吗 ?卷筒软纸中的数学右图为一圈“心相印”圈纸的截面图,纸卷直径 为20厘米,中间有一直径为6厘米的卷轴,若纸的 厚度为0.4毫米,问:中心的卷轴到纸用完时大约会转多少圈?这卷纸展开后大约有多长?(π取3.14)[前铺]如右图所示,等腰直角三角形ABC 的高AD=4厘米,以AD 为直径作圆分别交AB 、AC 与E 、F ,求阴影部分的面积。
(π取3) 分析:连接EF ,那么有BED ABD EOD S S S =-阴影三角形扇形,计算可得阴影部分面积为6平方厘米。
[巩固]一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少?(π取3)分析:圆无法运动到的部分是右下图中角处的阴影部分面积的4倍, 114111π⨯⨯-⨯⨯=[拓展]如右图所示,用一块面积为36平方厘米铝板下料,可裁出七个同样大小的圆铝板。
212十二、圆和组合图形(2)年级班姓名得分一、填空题1.如图,阴影部分的面积是.2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是(平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是.E D C B A GF O D CA B7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABCD 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)2 甲乙12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,一块半径为2厘米的圆板,从平面上1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、CD 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?120 ABCD 1 2A B Ca1 OC B A ED———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米).6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠, 又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.⌒E D C B AG F① ②花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米).11. 如图,小正方形的边长为2r,则①的面积为:72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯,②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,①和②的面积和为2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=S x ,解得S=6.③① ②14. 圆板的正面滚过的部分如右图阴影部分所求, 它的面积为:)420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).ABD12。
六年级圆与扇形练习题圆与扇形是初中数学中的重要概念,也是六年级学生需要掌握的知识点之一。
本篇文章将为你介绍一些六年级圆与扇形的练习题,帮助你巩固相关知识。
第一题:已知一个圆的半径为5cm,求其周长和面积。
解析:圆的周长可以通过公式C = 2πr 来计算,其中 r 表示圆的半径,π 的值可以取近似值3.14。
将半径 r 替换为5cm,即可得到圆的周长。
C = 2πr = 2 × 3.14 × 5 = 31.4cm圆的面积可以通过公式A = πr^2 来计算。
将半径 r 替换为5cm,即可得到圆的面积。
A = πr^2 = 3.14 × 5^2 = 78.5cm^2所以,该圆的周长为31.4cm,面积为78.5cm^2。
第二题:已知一个扇形的弧长为8cm,圆心角为30°,求扇形的面积。
解析:扇形的面积可以通过公式A = (θ/360°) × πr^2 来计算,其中θ 表示圆心角的度数,r 表示扇形所在圆的半径。
首先,我们需要将圆心角的度数转换为弧度。
由于180°等于π弧度,所以将30°转换为弧度的方法是:θ(弧度)= 30° × (π/180°) = π/6弧度然后,我们已知扇形的弧长为8cm,可以通过公式L = rθ 来计算弧长 L。
将已知数据代入公式,可以求得半径 r。
8 = r × (π/6)r = (8 × 6)/(π)r ≈ 3.818cm最后,将半径 r 和圆心角的弧度θ 代入扇形面积的公式,可以得到扇形的面积。
A = (π/6)/(2π) × (3.818)^2 ≈ 3.711cm^2所以,该扇形的面积约为3.711cm^2。
通过以上两个题目的练习,我们可以巩固圆与扇形的计算方法。
希望你能够理解并熟练运用这些知识,进一步提高数学水平。
祝你学业进步!。
一、几何图形的相关概念及基本公式1、点、线、面、体;直线、射线、线段、角;长方形(体)、正方形(体)、平行四边形、三角形、题型、多边形、圆与扇形、圆柱、圆锥、轴对称图形2、平面图形的周长、面积公式,立体图形的侧面积、表面积、体积公式3、定理、结论:三角形内角和、三角形三边关系、勾股定理、一笔画、格点图形面积公式(毕克定理)4、几何计数二、巧求周长和面积1、通过平移、旋转、翻折(对称)、割补等手段将图形转化成比较好求的形状2、利用差不变原理将图形转化3、利用面积之比与边长之比的关系解题三、几何五大模型1、等高模型及变型(如一半模型、鸟头模型等)2、风筝模型(也叫蝴蝶模型)3、相似三角形(金字塔模型、沙漏模型)4、题型比例关系(题型蝴蝶模型)5、燕尾模型四、长方体正方体及侧面展开图、圆柱圆锥【例 1】如图,阴影部分是正方形,则最大长方形的周长是_ _____厘米.知识框架例题精讲3 几何10答案: 30【练习】 如图7-20,在直角梯形ABCD 中,三角形ABE 和三角形CDE 都是等腰直角三角形,且BC=20厘米,那么直角梯形ABCD 的面积是多少?答案: 200平方厘米【例 2】 如图,有一块长方形的草坪,长20米,宽10米,现要在草坪上铺设两条宽1米的小路,则剩下草坪的面积是________平方米.答案: 171【练习】 一块矩形场地被一条路隔成甲、乙两块,甲乙的面积之比为3:8,尺寸如图,甲的面积是____。
21122乙甲答案: 60【例 3】 如图,一个梯形,面积为45,AB=10,高为6,则△AOB 的面积是___________.OCDA答案: 20【练习】如图,梯形ABCD的上底AD长5厘米,下底BC长12厘米,腰CD的长为8厘米,过B点向CD作出的垂线BE的长为9厘米,那么梯形ABCD的面积是多少?答案: 51平方厘米【例 4】已知如图,求阴影部分的面积(π取3.14)44答案: 4.56【练习】求图中阴影部分的面积。
第十五讲 圆和扇形研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯一、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用【例 1】 下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【解析】 割补法.如右图,格线部分的面积是36平方厘米.【例 2】 (2007年西城实验考题)在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为 平方厘米.【解析】 采用割补法.如果将阴影半圆中的2个弓形移到下面的等腰直角三角形中,那么就形成两个相同的等腰直角三角形,所以阴影部分的面积等于两个等腰直角三角形的面积和,即正方形面积的一半,所以阴影部分的面积等于21222⨯=平方厘米.【例 3】 计算图中阴影部分的面积(单位:分米).A A【解析】 将右边的扇形向左平移,如图所示.两个阴影部分拼成—个直角梯形. ()5105275237.5+⨯÷=÷=(平方分米).【例 4】 求图中阴影部分的面积.【解析】 如图,连接BD ,可知阴影部分的面积与三角形BCD 的面积相等,即为1112123622⨯⨯⨯=.【例 5】 求如图中阴影部分的面积.(圆周率取3.14)【解析】 可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【例 6】 求下列各图中阴影部分的面积.(1)1010(2)ba【解析】 在图(1)中,阴影部分经过切割平移变成了一个底为10,高为5的三角形,利用三角形面积公式可以求得110102522S =⨯⨯=阴影;在图(2)中,阴影部分经过切割平移变成了一个长为b ,宽为a 的长方形,利用长方形面积公式可以求得S a b ab =⨯=阴影.【例 7】 如图,长方形ABCD 的长是8cm ,则阴影部分的面积是 2cm .(π 3.14=)【解析】 阴影部分的面积实际上是右上图阴影部分面积的一半,所以求出右上图中阴影部分面积再除以2即可.长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:()2882822π2 6.88⨯÷-÷÷⨯⨯=所以左图阴影部分的面积等于6.882 3.44÷=平方厘米.【例 8】 求右图中阴影部分的面积.(π取3)45︒45︒20cm【解析】 看到这道题,一下就会知道解决方法就是求出空白部分的面积,再通过作差来求出阴影部分面积,因为阴影部分非常不规则,无法入手. 这样,平移和旋转就成了我们首选的方法.(法1)我们只用将两个半径为10厘米的四分之一圆减去空白的①、②部分面积之和即可,其中①、②面积相等.易知①、②部分均是等腰直角三角形,但是①部分的直角边AB 的长度未知.单独求①部分面积不易,于是我们将①、②部分平移至一起,如右下图所示,则①、②部分变为一个以AC 为直角边的等腰直角三角形,而AC 为四分之一圆的半径,所以有AC =10.两个四分之一圆的面积和为150,而①、②部分的面积和为11010502⨯⨯=,所以阴影部分的面积为15050100-=(平方厘米).(法2)欲求图①中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A 与C 重合,从而构成如右图②的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.所以阴影部分面积为21110101010022π⨯⨯-⨯⨯=(平方厘米).A板块二 曲线型面积计算【例 9】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. DCBA【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC 的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度.【例 10】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)【解析】 167212ABC S =⨯⨯=△, 三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°.【例 11】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【例 12】 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【解析】 由右图知,绳长等于6个线段AB 与6个BC 弧长之和.将图中与BC 弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒, 所以BC 弧所对的圆心角是60︒,6个BC 弧合起来等于直径5厘米的圆的周长. 而线段AB 等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米).【例 13】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【例 14】 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【例 15】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)D【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和. ABP ∆的面积为:()10102225⨯÷÷=;弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【例 16】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形 21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3) D BA DB【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积. 解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=.【例 17】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键. 我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【例 18】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯=【例 19】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)乙甲A【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【例 20】 (2009年十三分入学测试题)图中的长方形的长与宽的比为8:3,求阴影部分的面积.204【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.CD【例 21】如图,求阴影部分的面积.(π取3)【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅=6【例 22】 如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68O【解析】S S S =-阴影直角三角形半圆, 设半圆半径为r ,直角三角形面积用r 表示为:610822r rr ⨯⨯+= 又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r =,3r =所以1249π=24 4.5π2S =-⨯-阴影家庭作业【作业1】如图,在一个边长为4的正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积.【解析】阴影部分经过切割平移变成了一个面积为正方形一半的长方形,则阴影部分面积为4428⨯÷=.【作业2】如图,阴影部分的面积是多少?24【解析】首先观察阴影部分,我们发现阴影部分形如一个号角,但是我们并没有学习过如何求号角的面积,那么我们要怎么办呢?阴影部分我们找不到出路,那么我们不妨考虑下除了阴影部分之外的部分吧!观察发现,阴影部分左侧是一个扇形,而阴影部分右边的空白部分恰好与左边的扇形构成一个边长为4的正方形,那么阴影部分的面积就等于大的矩形面积减去正方形面积.则阴影部分面积(222)4(22)48++⨯-+⨯=【作业3】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【解析】原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为:2211227π738.5447⨯⨯≈⨯⨯=.四分之一大圆内的等腰直角三角形ABC的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=.【作业4】求下列各图中阴影部分的面积(图中长度单位为cm,圆周率按3计算):⑴3⑵4⑶111⑷2⑸2⑹【解析】 ⑴4.5 ⑵4 ⑶1 ⑷2 ⑸1.5 ⑹4.5【作业5】求图中阴影部分的面积(单位:cm ).2【解析】 从图中可以看出,两部分阴影的面积之和恰好是梯形的面积,所以阴影部分面积为21(24)39cm 2⨯+⨯=.【作业6】如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【作业7】如图是一个直径为3cm 的半圆,让这个半圆以A 点为轴沿逆时针方向旋转60︒,此时B 点移动到'B 点,求阴影部分的面积.(图中长度单位为cm ,圆周率按3计算).【解析】 面积=圆心角为60︒的扇形面积+半圆-空白部分面积(也是半圆)=圆心角为60︒的扇形面积22603π3π 4.5(cm )3602=⨯⨯==.【作业8】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IABCI【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ),BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【作业9】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【解析】 割补法.如右图,格线部分的面积是36平方厘米.【作业10】求图中阴影部分的面积.【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.。