六年级下册数学《圆和扇形》课件
- 格式:ppt
- 大小:1.06 MB
- 文档页数:20
小学数学奥数基础教程圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为πR-πr=π(R-r)=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
第17讲 圆和扇形组合图形的面积计算时,必须掌握有关的概念、公式,要观察图形的特点,看清组合图形是由哪几个基本图形组成的,看清题目的已知条件和问题。
对于一些比较复杂的组合图形,有时直接进行分解有一定的困难,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易,使比较复杂的图形变得简单,从而找出解答的方法。
例1 计算图中阴影部分的面积(单位:厘米)。
解(1)扇形的面积:3.14x42x 43=37.68(平方厘米)(2)直角梯形的面积:(4+6)x4÷2=20(平方厘米) (3)阴影部分的面积:37.68+20=57.68(平方厘米)答:阴影部分的面积是57.68平方厘米。
【思路点拨】这个图形不是我们学过的简单图形,是个组合图形。
是由一个扇形和一个直角梯形合并而成的。
求阴影部分的面积就是求扇形面积与梯形面积的和。
扇形是个43圆,扇形的半径是4厘米。
直角梯形的上底和高是扇形的半径,都是4厘米。
例2 计算图中阴影部分的面积(单位:厘米)。
解外圆的面积:3.14x2224=3.14x122=452.16(平方厘米)内圆的面积:3.14x26224−=3.14x62=113.04(平方厘米)阴影部分的面积:452.16-113.04=339.12(平方厘米)答:阴影部分的面积是339.12平方厘米。
【思路点拨】图中的阴影部分是个环形。
可用外圆的面积减去内圆的面积。
可以求出外圆的半径是24÷2=12(厘米)因为外圆的半径比内圆的半径多6厘米,所以内圆的半径是12-6=6(厘米)。
例3计算图A中阴影部分的面积(单位:厘米)。
解 3.14x42x41-4x(4÷2)÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米【思路点拨】阴影部分通过翻折移动位置后,可构成一个新的图形。
连接BC构成一个新的图形(如图B所示)。
空白部分的面积就是大三角形面积的一半。
用半径为4厘米的圆面积的一减去空白部分面积就是阴影部分的面积。
第14课时 圆和扇形的面积知识精要1、圆的面积(1)圆的概念:圆所占平面的大小叫做圆的面积。
(2)圆的面积公式:设圆的半径为r ,面积为S ,那么圆的面积为2S r π=2、扇形的面积(1)扇形的概念:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
(2)扇形的面积公式:设组成扇形的半径为r ,圆心角为0n ,弧长为l ,则213602n S r lr π==扇形 3、扇形统计图 扇形统计图是用圆的面积表示一组数据的整体,用圆中扇形面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。
扇形统计图有时也称做饼分统计图,扇形统计图可以直观地反映出各个部分数量在总量中所占的份额。
热身练习1、已知圆的周长为12.56厘米,则这个圆的面积是__12.56___平方厘米。
2、已知圆的面积是50.24平方厘米,那么这个圆的半径是___4___厘米。
3、已知扇形面积是1.413平方分米,圆心角是72°,那么它的半径是__15___厘米。
4、一个雷达圆形屏幕的半径是50厘米,那么屏幕的面积是__7850__平方厘米。
5、在一边长是12厘米的正方形铁片上,剪一个最大的圆,剪去的面积是__113.04___平方厘米。
6、大圆半径是小圆半径的3倍,大圆的面积是84.78平方厘米,则小圆的面积是__9.42___平方厘米。
精解名题例1、新华学校有个圆形花池,池边周围栏杆长50.24米,那么这个花池的圆形底面积是多少平方米? 解:半径:50.24÷2÷3.14=8(米)面积:3.14×8×8=200.96(平方米)例2、某挂钟的分针长6厘米,如果走过20分钟,这根分针在钟面上扫过的面积是多少平方厘米? 解:68.37614.336012036022=⨯⨯==r n S π(平方厘米)例3、一所中学准备搬迁到新校舍,在迁入新校舍之前就该校500名学生如何到新校舍的问题进行了一次调查,得到如下数据:步行90人,骑自行车160人,坐公共汽车220人,其他30人,请算出各部分学生数占学生总数的百分比,并用扇形统计图表示。
ABO圆和扇形章节复习内容分析圆和扇形是初中数学六年级第四章的内容,同学们需要学会用圆的周长、面积、弧长和扇形面积公式进行简单的计算,并体会近似与精确的数学思想.难点是圆的组合图形的面积计算,同学们需要灵活运用各个基本图形面积的计算方法,并能看出组合图形是由哪些基本图形组成,从而进行相关的计算.知识精讲基本内容注意点4.1 圆的周长 1、圆的周长公式及应用. 4.2 弧长 1、弧长公式及应用. 4.3 圆的面积 1、圆的面积公式及应用. 4.4 扇形的面积1、扇形的面积公式及应用;2、*圆的组合图形的面积计算.圆一:圆的周长1、 圆的周长通过操作和计算,我们发现圆的周长都是直径的固定的倍数,我们把这个倍数叫做圆周率,用字母π表示,π读作“pai”;圆周率π是个无限不循环小数, 3.14π≈.圆的周长÷直径 = 圆周率.用字母C 表示圆的周长,d 表示直径,r 表示半径,那么:C d π=或2C r π=二:弧长1、弧和圆心角的概念如图,圆上A 、B 两点之间的部分就是弧,记作:AB ,读作:弧AB ;AOB ∠称为圆心角.ABO2、弧长公式设圆的半径长为r ,n °圆心角所对的弧长是l ,那么:180nl r π=. 三:圆的面积1、 圆的面积圆所占平面的大小叫做圆的面积.设圆的半径长为r ,面积为S ,那么:圆的面积2S r r r ππ=⨯=.四:扇形的面积1、 扇形的概念由组成圆心角的两条半径和圆心角所对的弧围成的图形,叫做扇形. 如图,空白部分记作扇形AOB . 2、 扇形的面积设组成扇形的半径为r ,圆心角为n °,弧长为l ,那么:213602n S r lr π==扇形.五:圆的组合图形1、三角形的面积 =2⨯底高. 2、等腰直角三角形的面积 =24=直角边的平方斜边的平方. 3、长方形的面积 =⨯长宽. 4、正方形的面积 = 边长的平方 = 2对角线的平方.5、菱形的面积 =2对角线之积.6、梯形的面积 =()2⨯上底+下底高.7、圆的面积 =π⨯半径的平方. 8、扇形的面积 =360π⨯⨯︒圆心角半径的平方.例题解析【例1】圆的周长是这个圆半径的()倍A.6B.2 C.3.14D.6.28【难度】★【例2】同一个圆里,直径与半径的比是______.【难度】★【例3】要画一个周长为18.84厘米的圆,它的半径应取______厘米.【难度】★【例4】如果圆的半径缩小到它的13,那么圆的周长缩小到原来的______.【难度】★【例5】如果圆上一条弧长占圆周长的15,那么这条弧所对的圆心角占圆的周角的______.【难度】★【例6】圆心角为45°的扇形,如果拼成一个圆,需要这样的扇形至少____个.【难度】★【例7】下列叙述中正确的个数是()(1)弧的长度只取决于弧所在圆的半径大小;(2)两条弧的长度相等,则它们所对的圆心角相等;(3)圆心角扩大3倍,而圆的半径缩小13,那么原来的弧长不变.A.0B.1C.2D.3【难度】★【例8】一个扇形的面积是它所在圆面积的79,这个扇形的圆心角是______度.【难度】★【例9】一个圆的周长为9.42厘米,那么这个圆的面积是______平方厘米.【难度】★★【例10】把一根长314厘米的细钢丝绕在一个圆筒上,正好绕10周,这个圆筒的半径是()A.5B.10C.20D.3.14【难度】★★【例11】在一个边长为8厘米的正方形内画一个最大的圆,这个圆的周长是______厘米.【难度】★★【例12】有一个直径是8厘米的半圆形铁片,这个铁片的周长是______厘米.【难度】★★【例13】一个环形纸板,内圆半径是3厘米,外圆直径是10厘米,这个环形纸板的面积是______平方厘米.【难度】★★【例14】下列说法正确的是()A.扇形是圆的一部分,圆的一部分是扇形B.圆中任意画两条半径,一定能构成两个扇形C.如果圆的面积扩大9倍,那么圆的直径扩大9倍D.在所有扇形中,圆半径大的面积大【难度】★★【例15】已知大扇形的面积是小扇形面积的94倍,如果它们的圆心角相等,那么小扇形的半径是大扇形半径的______.【难度】★★【例16】已知扇形的弧长是9.42厘米,圆心角是270°,那么这个扇形的面积是______平方厘米【难度】★★【例17】图中的三角形是等边三角形,阴影部分是一个扇形,那么阴影部分的面积是______平方厘米.【难度】★★【例18】下面两个图形中,其中正方形的面积相等,那么阴影部分面积大小关系是()A.甲> 乙B.甲< 乙C.甲= 乙D.无法比较【难度】★★【例19】要画一个面积是3.14平方厘米的圆,圆规两脚之间的距离要取______厘米.【难度】★★【例20】在周长为24厘米的正方形纸片上剪去一个最大的圆,则剩余部分的周长是______厘米,面积是______平方厘米.(结果保留 ).【难度】★★【例21】如图,阴影部分周长相同的有()A.1个B.2个C.3个D.4个【难度】★★【例22】如图,正方形中,分别以两个对角顶点为圆心,以正方形的边长6为半径画弧,形成树叶形的图案(阴影部分),求树叶形图案的周长.【难度】★★【例23】扇形的面积是314平方厘米,扇形所在的圆的面积是1256平方厘米,这个扇形的圆心角是多少度?【难度】★★【例24】如图,AB = BC = CD = 2厘米,分别求出大、中、小圆的周长和面积.ABCDABCD【难度】★★【例25】 如图,四边形ABCD 是长方形,AB = 12 cm ,求图中阴影部分的面积. 【难度】★★【例26】 一辆自行车轮胎的外直径是0.7米,如果车轮每分钟转90周,40分钟能行多远?通过一座567米的大桥需要多少分钟?( 取3)【难度】★★ 【答案】 【解析】【例27】 在长19厘米,宽9厘米的长方形纸片中,剪半径都是1.5厘米的小圆,共可剪出小圆多少个?剪去这些小圆后,剩下的边角料的总面积是多少?.【难度】★★ 【答案】 【解析】【例28】 四个半径为2厘米的圆围成的图形中,求阴影部分的面积和周长. 【难度】★★ 【答案】课后作业【作业1】若一弧的长是它所在圆的周长的15,则此弧所对的圆心角是______度.【难度】★【作业2】如果一条弧所对的圆心角缩小为原来的14,所在圆的半径扩大为原来的3倍,那么所得的新弧长与原来的弧长之比是______.【难度】★【作业3】甲圆与乙圆的半径之比是 2 : 3,则甲与乙的直径之比是______,周长之比是______,面积之比是______.【难度】★【作业4】下列说法正确的个数是()(1)半径越大,圆的面积越大;(2)半径越大,所对的弧越长;(3)弧是圆上两点间的一条线段;(4)圆心角相等,它们所对的弧长也相等.A.1个B.2个C.3个D.4个【难度】★★【作业5】求下列各圆的周长和面积:(1)r = 3,C =______,S =______;(2)d = 8,C =______,S =______;(3)l = 5,n = 72°,S =______.【难度】★★【作业6】求下列弧的弧长:(1)r = 4,n = 90°,l =______;(2)d = 9,n = 120°l =______;(3)C = 20,n = 175°l =______.【难度】★★【作业7】 在长是6厘米,宽是4厘米的长方形内剪一个最大的圆,则圆的面积是______平方厘米【难度】★★【作业8】 用一根长为37.68厘米的铅丝围成一个圆,圆的面积是______平方厘米. 【难度】★★【作业9】 一个圆环形纸片,外环半径6厘米,内环半径5厘米,这个圆环的面积是______平方厘米,周长是______厘米.【难度】★★【作业10】 已知一个扇形的半径是6厘米,圆心角是120°,则此扇形的周长是______厘米.【难度】★★【作业11】 扇形的半径是6分米,扇形的弧长是4π分米,这段弧所对的圆心角是______度,这个扇形的面积是______平方分米.(结果保留π)【难度】★★【作业12】 一个时钟的时针长5厘米,它从上午8点到下午4点,时针针尖走过的距离是( )A .203πB .103π C .60π D .30π【难度】★★【作业13】 已知一条弧长等于1,它的半径为R ,这条弧所对的圆心角增加1°,则它的弧长增加( )A .1nB .180Rπ C .180Rπ D .1360【难度】★★ABOABC DABCD【作业14】 如图,半径r = 12,60AOB ∠=︒,求这个图形的周长. 【难度】★★【作业15】 如图,正方形ABCD 的边长为4,求阴影部分的面积和周长. 【难度】★★【作业16】 如图,四边形ABCD 是长方形,AB = 10 cm ,BC = 6 cm ,求阴影部分的周长. 【难度】★★。