植物抗寒性研究进展
- 格式:doc
- 大小:65.50 KB
- 文档页数:8
第43卷第4期2007年4月林业科学SCIE NTIA SILVAE SINICAE Vol .43,No .4Apr .,2007植物抗寒性的生理生态学机制研究进展*徐 燕 薛 立 屈 明(华南农业大学林学院 广州510642)摘 要: 综述植物在冷驯化过程中发生的一系列生理生化变化。
环境对植物抗寒性的影响主要与光诱导、温湿度以及气候的变化有关。
植物表面形成冰层会引起植物的无氧呼吸,导致植物受害;光抑制诱导活性氧的产生,从而导致植物光合系统的退化,抗寒能力下降,而短日照诱导植物休眠,有利于植物抗寒。
光敏色素则被认为是启动冷驯化的光受体;植物通过冷驯化增加碳水化合物的积累及病原体相关蛋白的合成,以增强对低温病原体的抵抗能力;气候的变化使植物遭受了更大的冷伤害风险。
微管最初遇冷时部分的解体可以有效诱导植物抗寒性;抗氧化酶活性增强,植物体内糖、脯氨酸、多胺等内含物含量上升。
植物休眠状态中的生理变化(种子的休眠、芽的休眠)与AB A 敏感性的差异有关。
对植物抗寒性分子机制的研究表明:CO R 基因的表达对于植物抗寒性和冷驯化是十分关键的;与气候梯度有关的基因梯度的分布说明寒冷地区的树种更为抗寒;多表型性状的数量性状分析,为重要的农艺性状标记辅助选择(MAS )提供基础。
对植物抗寒过程中的信号转导进行研究发现,Ca 2+是低温下参与调节冷驯化应答机制中信号转导途径的重要的第二信使。
未来植物抗寒领域的研究热点为信号转导和基因调节,低温抗性的遗传学和遗传应用及代谢组学,气候变化对于植物抗寒的影响等方面。
关键词: 植物;环境;抗寒;生理;分子机制中图分类号:S718.43;Q945.78 文献标识码:A 文章编号:1001-7488(2007)04-0088-07收稿日期:2006-01-20。
基金项目:广东省林业局项目(4400-F02084,4400-F05004)。
*薛立为通讯作者。
Physiological and Ecological Mechanisms of Plant Adaptation to Low TemperatureXu Yan Xue Li Qu Ming(C oll eg e o f For es tr y ,Sou th Chi na Agr icul tur al Uni vers ity Gu ang zh o u 510642)Abstract : Chilling injury is one of the ecological factors c ausing environmental stress in plants .Exploring the physiological and ecological mechanisms of c old tolerance in plants can under stand ho w plants gro w at low temperatur e ,which has important meaning in theory and practice .At present ,study on cold toler ance in plants focuses on physiology ,genes ,and relationship between plants and environment and so on .This article revie ws the physiological and ecological response of plants to lo w temper atur e during c old acclimation .Over wintering plants encased in ice can be exposed to anaerobic conditions and suffer phytotoxicity .Photoinhibition induced the increase of r eactive oxygen species (ROS ),causing the degradation of photosystems ,which is unfa vorable for cold hardiness of plants .Shor t da ys induc e dor manc y in plants ,resulting in a increase in cold hardiness of plants .Phytochr ome has been c onsidered to be the photoreceptor r esponsible for tr iggering the initiation of the first sta ge of c old acclimation .The acc umulation of carbohydrates and pathogenesis -related proteins enhances the resistance of plants to low -temper atur e pathogens .Scientists pr edict that plants will suffer greater risk of low -te mperature da mage with the c hanges in climate .An initial partial disassembly of microtubles is sufficient to trigger efficient cold acclimation .The adaptation of plants to c old also associates with the incr eased levels of antioxidants enzymes ,sugar ,proline ,polymines and so on .Changes in dormanc y status are mor e likely related to changes in ABA sensitivity than to var iations in ABA levels .The expr ession of COR (cold r esponsive )genes is cr itical in plants for both c hilling tolerance and c old acclimation .Genotypes fr om colder envir onments have greater cold hardiness in situ than those from milder envir onments .The QTL analysis of multiple phenotypic traits pr ovides the basis for marker assisted selection (MAS )of important a gronomic characters .Calcium is an important second messenger in a low temper atur e signal transduction pathway involved in regulation of c old -acclimation response .Signal tr ansduction ,gene re gulation ,genetics ,metabolomics ,and climate change affecting the plant survival are impor tant aspects in the future study of c old tolerance in plants .Key words : plants ;environment ;cold tolerance ;physiology ;molec ular mechanism低温寒害是农林业生产中一种严重的自然灾害,据统计,世界每年因此造成的损失达2000亿美元(卢存福,2004)。
植物抗寒生理的研究进展
植物抗寒生理的研究进展主要涉及以下几个方面:
1. 低温适应机制:植物在低温环境下生存和生长的能力是至关重要的。
研究已经发现,植物通过一系列的生理生化机制来适应低温环境,包括产生冷反应基因和相关的基因,以及这些基因之间的相互作用。
2. 植物激素在抗寒中的作用:植物激素在植物抗寒中起着重要的作用。
例如,脱落酸(ABA)可以诱导植物产生抗寒性,而细胞分裂素则可以保护植物免受低温的伤害。
此外,一些植物激素还可以调节植物对低温的响应,如钙调蛋白激酶和MAPK等。
3. 抗寒基因的鉴定和功能研究:随着生物技术的发展,越来越多的抗寒基因被鉴定和研究。
这些基因包括编码保护酶类(如SOD、POD、CAT等)的基因、调节ABA合成和信号转导的基因等。
对这些基因的研究将有助于我们更深入地了解植物抗寒的分子机制。
4. 抗寒锻炼和适应性生理变化:植物在经历低温锻炼后,可以产生一系列适应性生理变化,如增加膜的稳定性、提高保护酶的活性等。
这些变化有助于植物在低温环境下生存和生长。
5. 抗寒育种:通过选择具有抗寒特性的品种,培育出抗寒能力更强的植物,是植物抗寒研究的一个重要应用。
通过结合传统育种方法和现代生物技术,可以培育出既具有优良农艺性状,又具有较强抗寒能力的植物新品种。
总的来说,植物抗寒生理的研究进展在多个领域都有所涉及。
未
来,随着生物技术的不断发展,我们期待在植物抗寒生理的研究中取得更多的突破和进展。
植物抗寒机制研究进展随着全球气候变化的加剧,气温的波动也变得越来越剧烈。
在这样的环境下,如何保证植物的生长和发展,成为了一个值得研究的问题。
植物在生长过程中,需要经历从种子发芽、生长发育、开花结果等阶段。
而在这个过程中,适应外部环境变化、保持内部稳定的抗逆性反应,也就是植物的逆境生理,变得越来越受到研究者的重视。
特别是对于逆境生理研究领域的重要之一——植物抗寒机制——的研究,更是展现出了令人振奋的进展。
植物抗寒机制的主要研究内容包括冷适应的分子调控、冷休眠的形成机制、冷害分子机制和分子遗传学等方面。
在这些方面的研究中,逐渐揭示出了植物抗寒机制的一系列信号途径、激素信号、非编码 RNA、基因表达、蛋白质修饰等方面的机制与调控。
在信号途径方面,植物抗寒机制的主要信号途径包括钙信号途径、激素信号途径、ROS 信号途径等方面。
其中,钙离子作为植物信号传递的重要分子,在植物抗寒机制中扮演着重要的角色。
冷胁迫会导致植物胞内 Ca2+ 浓度的升高,从而诱导一系列 Ca2+ 信号途径的启动。
同时,植物激素信号途径也是植物抗寒机制的重要组成部分。
多种植物激素,如脱落酸、赤霉素、乙烯和 ABA 等等,都会在植物抗寒过程中发挥重要作用。
例如,ABA 能够通过特定信号转导途径调控一系列抗寒基因的转录,从而实现植物对低温的适应和适应性形成。
此外,氧化还原反应(ROS)信号途径也被视为植物抗寒机制的关键途径之一。
研究表明,通过引导ROS 的产生和适度的 ROS 增加,可能有助于催化和调控抗寒酶系统中的酶活性,从而促进植物的抗寒适应性。
除了信号途径外,植物抗寒机制的另一个重要研究方向是抗寒基因的筛选和分子调控。
抗寒基因是植物应对低温胁迫的唯一基础,是植物抗寒适应性的重要组成部分。
通过使用一系列分子生物学和生物信息学技术,研究人员已经成功地鉴定和筛选了许多参与植物抗寒适应性调控的基因。
例如,研究人员已经成功鉴定到大约数百个参与植物光合作用、膜转运和代谢途径的基因在低温胁迫下会发生表达变化。
植物抗寒适应性生理生态学研究随着全球气候变暖的趋势,自然界中许多植物面临着越来越严峻的环境压力,例如极端高温和极端低温等极端气候条件。
在这样的条件下,植物必须适应并保持其生命活动。
为适应低温环境,许多植物演化出了一些抗寒适应性生理生态学机制。
本文将重点介绍植物抗寒适应性生理生态学研究的进展。
一、植物抗寒适应性生理生态学抗寒适应性生理生态学(cold adaptation physiology and ecology)是指植物为适应低温环境而演化出的一系列适应性机制。
与其它植物生理生态机制一样,植物抗寒适应性生理生态学也是针对外界环境的适应性反应,其目的是维持植物正常的生命过程和代谢,并保持其生存能力。
二、植物抗寒适应性生理生态学的主要机制1、抗寒酶在低温环境中,植物产生一些特殊的酶,称为抗寒酶(cold acclimation associated enzymes),这些酶可以帮助植物在低温条件下保持正常的生理活性和代谢。
抗寒酶主要包括脯氨酸变性酶、赤霉素20-氧化酶和细胞膜的渗透调节蛋白等。
2、脯氨酸的累积在低温环境中,植物会积累大量的脯氨酸(proline),从而维护细胞的渗透压和稳定,保持细胞的正常生活活性和代谢。
此外,脯氨酸的积累还可以促进细胞钙离子的内流和累积,从而保持生物体内的离子和渗透压平衡。
3、罗布酯的产生罗布酯是一种非常特殊的糖类,广泛存在于植物中。
在低温条件下,植物会通过一些代谢途径产生罗布酯,从而保持细胞内部水分的稳定和渗透压平衡。
同时,罗布酯还可以起到抗氧化的作用,减少低温环境对细胞的氧化损伤。
4、细胞膜的调整在低温环境下,植物膜组成中的一些脂质分子会发生变异,从而促进细胞膜的晶格化程度和稳定性,防止细胞膜的流动性。
三、结论这些机制共同构成了植物抗寒适应性生理生态学的研究范畴。
当植物面临低温环境时,它们会通过积累抗寒酶、脯氨酸、罗布酯等途径,反应并适应低温环境。
同时,植物还会通过调整膜组成和渗透调节等方式来保持生命活动。
植物抗寒性研究进展摘要:综述了近年来植物在抗寒性研究方面的进展情况,并对该项研究的前景进行了展望。关键词:抗寒性;植物;生理生化;CBFReserch Progress on tCold Resistance of PlantAbstract:This paper reviewed the progress of the study of cold resistance of plant in recent years,and had a brief prospect on this project.Key words:cold-resistance; plant; physiological and biochemical; CBF温度是影响植物生长发育的重要环境因子之一,严格地限制了植物的分布区域,影响其生物产量。低温伤害是农业生产中经常发生的自然灾害,不仅限制农作物的地理分布,而且严重影响农作物的品质和产量,甚至造成农作物大面积死亡。迄今为止,尚没有解决低温伤害的根本办法[1]。只有对植物的低温伤害机理有了全面而又深刻的认识,才能更好地解决低温伤害问题。植物抗寒机理的研究,是一个非常复杂的过程。植物抗寒性研究,最初集中于生理生化方面,随着科技的进步,又逐步转向了更加深入的分子水平的研究。1植物抗寒生理生化研究在最初的生理生化研究中,主要探索了寒害和冻害对细胞和组织造成损伤的机理、相应的生理生化变化、植体内某些生化物质与抗寒性的关系以及细胞结构成分(如细胞膜和质体)与抗寒性间的关系等。1.1膜系统与植物的抗寒性植物膜系统与其抗寒性紧密相关。从一定意义上讲,细胞的基本骨架是一个生物膜系统。生物膜是植物细胞的物质和能量合成、分解及转运过程中必不可少的部分,它的结构、性质及成分的变化,都直接或间接影响细胞的物质及能量代谢[2]。质膜首先接收外界刺激,然后通过一系列的反应,引起细胞发生一系列生理生化反应,并且质膜的组成成分与其抗寒性有密切关系。Lyons提出的“膜脂相变”学说认为,当植物遭受低温伤害时,生物膜首先发生膜脂物相的变化,由刚开始的液晶相变为凝胶相,膜脂上的脂肪酸链也由无序排列变成了有序排列,膜的外形和厚度同时发生变化,继而膜上产生龟裂,导致膜的透性增大、膜结合酶的结构改变,从而导致细胞生理生化代谢的变化和功能的紊乱[3]。沈漫等[1]的研究表明,绿豆细胞膜系存在2个相变温度:28℃、15℃,膜脂存在3个状态:液晶态、液晶和凝胶混合态和以凝胶占绝对优势数量的状态。1.2细胞抗氧化系统与植物的抗寒性细胞抗氧化途径是细胞抗寒生理生化重要途径之一。1968年,Mc Cord等[4]首次在牛血红细胞中发现了超氧化物歧化酶(Superoxide dismutase,SOD),提出了氧中毒的O2-理论。从此以后,生物氧自由基代谢及其生理作用受到广泛重视。生物氧自由基是通过生物体自身代谢产生的一类自由基,主要指活性氧(Active oxygen species,AOS)。活性氧是分子氧部分还原后,具有高度化学活性的一系列产物,包括超氧阴离子(Superoxide anion,O2·-)、过氧化氢(Hydrogen peroxide,H2O2)、羟自由基(Hydroxyl radical,·OH)和单线态氧(Singlet oxygen,1O2)等[5]。由于AOS在生物体内的性质极为活泼,在正常情况下细胞内AOS的产生与清除处于一种动态的平衡状态。一旦AOS清除系统受损,活性氧代谢失调,浓度超过正常水平时,积累过量,即对细胞形成氧化胁迫。活性氧胁迫导致冷害的发生,已在“Fortunr”柑橘[6]和青椒[7]等植物中得到证实。1.3细胞渗透调节物质与植物的抗寒性渗透调节(Osmotic adjustment)是植物适应逆境的一种主要方式。干旱、高盐和低温等多种逆境,都会造成植物不同程度的脱水,直接或间接影响植物细胞内渗透势的变化,形成渗透胁迫。参与渗透调节的物质大致可分为两类,一类是细胞内的各种无机离子,如Ca2+、Mg2+、K+、Cl-和NO3-等;一类是在细胞内的有机物质,如脯氨酸、甜菜碱和可溶性糖等。其中可溶性蛋白、可溶性糖和脯氨酸是植物体内的几种重要渗透调节物质。脯氨酸(Proline)是重要的抗寒保护性物质,其含量的增加有利于植物抗寒性的提高。可溶性糖作为一个渗透调节因子,它的积累可以增加细胞的保水能力,调节细胞渗透势。多数研究认为:低温锻炼或低温胁迫引起可溶性蛋白质的增加,可溶性蛋白质含量与抗寒性呈正相关。1.4植物生长物质与植物的抗寒性植物生长物质(Plant growth substance)在植物逆境适应过程中起着重要的作用,特别是脱落酸(ABA)、赤霉素(GA)、多胺(Polyamine)等内源生长物质和PP333等人工合成的植物生长调节剂(Plant growth regulator)。在ABA与植物抗寒性的关系研究中发现,在油菜、烟草、玉米、番茄、马铃薯和水稻等植物低温锻炼过程中,游离ABA含量明显增加[8]。外源ABA和PP333处理,柑橘叶片内源ABA含量增加,GA含量降低,ABA/GA 增大,这可能是抗寒锻炼使柑橘抗寒力提高的内在机理[9]。外施PP333能提高Murcott橘橙原生质体的抗寒性[10]。在柚的越冬期喷施PP333,发现其抗寒性增强[11]。2植物抗寒的分子机理研究随着分子生物学和生物技术的迅速发展,以及对模式植物抗寒机理研究的深入,人们对植物抗寒性的研究,逐渐由生理生化的层面,走向更微观的分子水平。当外界温度降低时,植物感受低温信号,引起许多基因表达的变化。Guy等[12]也提出冷锻炼能改变基因的表达。近年来,利用包括基因芯片、SAGE(Serial analysis of gene expression)、蛋白组学在内的各种手段,已从拟南芥、油菜、苜蓿、菠菜、马铃薯、小麦、大麦等多种植物中鉴定出许多冷诱导基因[13],如拟南芥中的kin1、cor6.6/kin2、cor15a、cor47/rd17、cor78/rd29A/lti78和erd10,油菜中的Bn28和Bn115,小麦中的wcs120和wcs200等。现在已经鉴定得到300多种胁迫诱导的基因。其中很多基因,不止响应一种胁迫,而是响应多种胁迫,如10%干旱诱导的基因也被冷胁迫诱导。从整体上划分,这些基因可以归属到两个大的反应途径,即ABA依赖的途径与非ABA依赖的途径。下面将对两条胁迫途径及其相关基因进行详细论述。2.1依赖ABA的低温应答途径脱落酸(Abscisic acid,ABA)主要在种子休眠、萌发、气孔关闭及干旱、低温、离子渗透等非生物胁迫应答中起重要调控作用。同时,ABA信号转导途径和生物胁迫信号途径之间存在明显的重叠区和许多交叉点,在植物生物胁迫应答过程中也起着十分重要的调控作用。植物激素ABA的信号转导极其复杂,拟南芥中受ABA调控的基因超过1 300个[14]。此外,ABA还在转录后水平上调控某些蛋白质的活性,这种作用包括水解蛋白以及通过RNA结合蛋白调控特异mRNA的翻译等。拟南芥和水稻在ABA和各种非生物逆境胁迫处理之后有5%~p 2.1.1AREB/ABF-ABRE途径ABA依赖型,其表达依赖于内源ABA的积累或外源ABA的处理。很多ABA诱导的基因启动子上含有一个保守的顺式作用元件,叫做ABRE(ABA-responsive element;PyACGTGGC),首先在小麦的Em基因[16]及水稻的RAB16基因[17]中分离得到。这和很多胁迫诱导基因所含有的保守元件G-box(CACGTGGC)很相似。目前,ABRE已被发现存在于很多ABA应答的COR基因中,如拟南芥COR15A 及RD29A基因。但是光有一份ABRE对于ABA应答的转录还是不够的,还需要一份“耦合元件”(Coupling element,CE)或另一份ABRE协同作用。如大麦中HV A1及HV A22基因需要CE1及CE3[18],拟南芥中的RD29B则含有两份ABRE[19]。与ABRE结合的转录因子是一类碱性亮氨酸拉链(Basic leucine zipper,bZIP)类转录因子,被称为ABRE结合蛋白(ABRE-binding proteins,ABEB)或ABRE结合因子(ABRE-binding factors,ABF)。在拟南芥中发现14个AREB亚家族同源bZIP类转录因子,它们都含有3个N端(C1、C2、C3)和1个C端(C4)的保守结构域。大多数AREB亚家族蛋白都在植物组织或种子中参与ABA应答的信号转导途径。如拟南芥的ABEB1/ABF2、AREB2/ABF4、ABF3在植物组织中而不在种子中表达,而ABI5及EEL在种子成熟和/或萌发时表达。过量表达ABF3及AREB2/ABF4导致一些下游ABA应答基因的表达,如LEA 基因(RD29B,rab18)、细胞周期调节基因(ICK1)、蛋白磷酸化酶2C基因(ABI1,ABI2)等,说明AREB/ABF在植物中参与ABA及胁迫应答。而ABEB1/ABF2则是葡萄糖信号途径的一个必须的组成成分,它过量表达也会增加植物抗逆性[20]。最近的研究表明,拟南芥SnRK2.2/SRK2D和SnRK2.3/SRK2I蛋白激酶可以促使AREB/ABF磷酸化,从而激活其下游ABA诱导基因的表达[21]。2.1.2依赖ABA的其他途径在ABA依赖的表达途径中,并不是所有的胁迫诱导基因都含有ABRE类似元件,如RD22就不存在ABRE。除了前面所述的途径,还存在ABA依赖但不直接作用的途径。在RD22的启动子上有两个重要的顺式作用元件:MYC结合位点和MYB结合位点。ABA并不直接诱导RD22的表达,而是需要合成新的蛋白质(MYC及MYB类转录因子),来识别这两个位点,拟南芥中是AtMYC2(rd22BP1)和AtMYB2。这两个转录因子在内源ABA积累后才开始表达。2.2非ABA依赖的低温应答途径非ABA依赖的低温应答途径,是另外一条非常重要的胁迫反应途径。其中又可分为以下几条途径:2.2.1CBF途径在很多抗逆境相关基因的启动子上,存在CRT/DRE(C-Repeat/Drought responsive element)元件,特异识别CRT/DRE元件的转录因子叫做CBF/DREB1(C-Repeat Binding Factor/DRE Binding protein 1)、DREB2。CBF/DREB1的表达受低温诱导而不受脱水、高盐胁迫诱导。DREB2A和DREB2B则被脱水、高盐胁迫诱导而不被冷诱导。CBF4/DREB1D被渗透胁迫诱导。DDF1/DREB1F和DDF2/DREB1E被高盐胁迫诱导。除了在拟南芥中,在其他物种中也发现了很多CBF同源的基因。如油菜、大麦、小麦、番茄、水稻、黑麦和柑橘等。大多数CBF同源基因也是由低温诱导,而且随着CBF的积累,相应的下游基因也会积累[22]。研究显示,有100多个基因属于CBF调节元(CBF Regulon)的成员。这些CBF调节元基因编码多种功能蛋白、转录因子(如C2H2锌指类、AP2/ERF类转录因子)、信号转导途径的成分(如转录阻遏物STZ)、生物合成蛋白(如渗透保护剂的合成蛋白)、抗冻保护蛋白(Cryoprotectant protein,如COR15a)及其他胁迫相关的蛋白(如糖运输蛋白、去饱和酶)。有些CBF调节元基因已研究得比较清楚,如COR15a,调节脯氨酸水平的酶P5CS2,肌醇半乳糖苷合成酶(棉子糖合成过程的一个关键酶)等,它们对植物抗寒性的提高有显著作用。总之,CBF/DREB1可以调节很多胁迫诱导的基因表达,在植物冷应答途径中起了重要的作用。2.2.2参与冷驯化的非CBF冷调节途径现在普遍认为,CBF冷应答途径在植物低温逆境中起着重要的作用。除CBF途径之外,还有其他的途径参与低温应答,现有证据也表明确实存在这些途径。如eskimo1突变体,不需要低温锻炼即能组成型地提高植物的抗寒能力,且在此过程中,没有涉及COR基因的表达[23]。虽然大多数响应低温上调的基因都被CBF调节,但也存在一些不受CBF调节的基因存在。Zhu 等[24]鉴定了两个组成型表达的基因HOS9和HOS10,HOS9编码一个推测的homeodomain转录因子,而HOS10则编码一个推测的R2R3类MYB转录因子。HOS9和HOS10是一些冷应答基因的负调控者,它们对植物抗寒起着一定的作用,但是这些基因都不属于CBF调节元。2.2.3ICE1调节的CBF途径Chinnusamy等[25]利用PCBF3: LUC生物荧光检测技术,鉴定得到一个CBF的上游转录因子,并命名为:ICE1(Inducer of CBF expression 1),这是目前知道的惟一直接作用在CBF启动子上的转录因子。组成型超表达ICE1,可增强CBFs及COR基因的表达,并增强转基因拟南芥的抗冻性[26]。ICE1是组成型表达并定位在核内,但是激活CBF表达需要冷处理,这说明ICE1在冷诱导下的修饰才具有活性。ICE1编码一个MYC类碱性螺旋-环-螺旋(Basic helix-loop-helix,bHLH)转录因子,可结合在CBF3启动子上MYC识别位点,从而激活低温胁迫下CBF3的表达。正常的环境条件下,ICE处于一种不活动状态。但植株经受低温后,就会激活一条信号转导途径,导致ICE或相关蛋白的修饰,从而使ICE能诱导CBF基因的表达。虽然正常环境下,ICE1不能诱导CBF的表达,但可能存在与MYC类似的转录因子来激活它们。在拟南芥ice1突变体中,发现大量的冷诱导基因不被诱导,或者诱导量不到野生型的50%,且这些基因中有32个编码转录因子,说明ICE1是一个控制很多冷应答的依赖CBF或非依赖CBF的基因表达的“主开关”(Master switches)[26]。2.2.4其他调节CBF表达的途径CBF基因家族拥有众多的家族内基因,这些基因具有一定的自我调控功能,从而使表达量发生改变。如CBF2可以作为CBF1及CBF3的负调节因子[27],而CBF3也可负调控CBF2[25]。另外,其他一些蛋白也参与了CBF的冷诱导调控。如ZAT12可以负反馈调控CBF[28]。另外,研究还发现,有些基础代谢途径的成分,也参与了CBF途径。如los1突变体中,蛋白质合成不能进行,从而使CBF基因超诱导表达,但不诱导COR基因的表达[29],说明CBF蛋白对其本身的表达具有反馈抑制作用;HOS1参与经26S蛋白酶体(Proteasome)的特异蛋白质的降解[30],负调控CBF的表达[31],因此推测它可能通过降解CBF的正调节因子,如ICE1,来实现调控的功能。LOS4基因的一个突变体los4-1会降低CBF1-3及其下游靶基因的表达[32],而另外一个突变体los4-2的功能却刚好相反,会增强CBF及其靶基因的表达[33]。3展望抗寒性研究是植物抗逆研究的热点之一。近年来,关于抗寒机理的研究不断深化,并且与抗寒相关的应用性研究也有所加强,如果树等的抗寒育种及不同区域的栽植试验等。我们认为,今后的抗寒性研究,可从以下几个方面展开:①改进研究方法。逐步探索利用新发明的功能更多、精度和可靠程度更高的实验仪器和更加完善的实验方法,进行抗寒性的研究,有望得到突破性的结果;②加深分子机理研究。随着分子生物学理论和生物技术的进步,更广泛的开展基因、蛋白质等方面的研究成为可能,加强分子机理的研究,将会更加快捷、高效的揭示植物的抗寒性机理。参考文献:[1] 沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):1-8.[2] 简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983(1):17-23.[3] L YONS J M.Chilling injury in plants[J].Ann Rev Plant Physiol,1973,24:445-466.[4] MC CORD J M,FRIDOVICH I.Superoxide dismutase: an enzymatic function for erythrocuprein[J]. J Biol Chem 1969,24:6049-6055.[5] PRICE A H,TAYLOR A,RIPLEY S J,et al.Oxidative signals in tobacco increase cytosolic calcium[J].Plant Cell,1994,6(9):1301-1310.[6] SALA J M,LAFUENTE M T.Catalase enzyme activity is related to tolerance of mandarin fruits to chilling[J]. Postharvest Biology and Technology,2000,20(1):81-89.[7] PURVIS A C,SHEWFELT R L,GEGOGEINE J W.Superoxide production by mitochondria isolated from green bell pepper fruit[J].Physiol Plant,1995,94(4):743-749.[8] 罗正荣.植物激素与抗寒力的关系[J].植物生理学通报,1989(3):1-5.[9] 刘祖祺,张连华,朱培仁.用放射免疫法分析柑桔抗寒锻炼中游离和结合态脱落酸的变化[J].园艺学报,1990,17(3):197-202.[10] 李卫,孙中海,章文才,等.多效唑提高柑桔原生质体抗寒性的研究[J].湖北大学学报(自然科学版),1997,19(1):79-82.[11] 马翠兰,刘星辉,胡又厘. PP333对柚越冬期耐寒性调控的研究[J].果树科学,1999,16(3):197-201.[12] GUY C L,NIEMI K J, BRAMBL R.Altered gene expression during cold acclimation of spinach[J]. Proc Natl Acad Sci USA,1985,82(11):3673-3677.[13] 邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能[J]. 植物学通报,2001,18(5):521-530.[14] HOTH S, MORGANTE M,SANCHEZ J P,et al.Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaked gene regulation in the abi-l mutant[J]. Journal of cell science, 2002, 115:4891-4900.[15] NAKASHIMA K,ITO Y,YAMAGUCHI-SHINOZAKI K.Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J].Plant Physiol,2009,149:88-95.[16] GUILTINAN M J,MARCOTTE W R,JR. AND QUATRANO R S.A plant leucine zipper protein that recognizes an abscisic acid response element[J].Science,1990,250:267-271.[17] MUNDY J,YAMAGUCHI-SHINOZAKI K,CHUA N H.Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene[J]. Proc Natl Acad Sci USA,1990,87(4):1406-1410.[18] SHEN Q,ZHANG P, HO T H.Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley[J].Plant Cell,1996,8(7):1107-1119.[19] UNO Y,FURIHATA T,ABE H,et al.Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J].Proc Natl Acad Sci USA,2000,97(21):11632-11637.[20] KIM S,KANG J Y,CHO D I,et al.ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J].Plant J,2004,40(1):75-87.[21] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al. Three SnRK2 protein kinases are the main postein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant Cell Physiol,2009,50(12):2123-2132.[22] JAGLO K R,KLEFF S,AMUNDSEN K L,et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and freezing tolerance in Arabidopsis[J].Genes Dev,2003,17:1043-1054.[23] XIN Z, BROWSE J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant[J].Proc Natl Acad Sci USA,1998,95:7799-7804.[24] ZHU J,VERSLUES P E,ZHENG X,et al. HOS10 encodes an R2R3-type MYBtranscription factor essential for cold acclimation in plants[J]. Proc Natl Acad Sci USA,2005,102:9966-9971.[25] CHINNUSAMY V,OHTA M,KANRAR S,et al.ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes Dev,2003,17:1043-1054.[26] CHINNUSAMY V,ZHU J,ZHU J K.Gene regulation during cold acclimation in plants[J].Physiol Plant,2006,126:52-61.[27] NOVILLO F,ALONSO J M,ECKER J R,et al. CBF2/REB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J].Proc Natl Acad Sci USA,2004,101:3985-3990.[28] VOGEL J T,ZARKA D G,V AN BUSKIRK H A,et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. Plant J,2005,41:195-211.[29] GUO Y,XIONG L,ISHITANI M,et al.An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperature[J] Proc Natl Acad Sci USA,2002,99:7786-7791.[30] YANG Y,FANG S,JENSEN J P,et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli[J].Science,2000,288:874-877.[31] ISHITANI M,XIONG L,LEE H,et al. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis[J].Plant Cell,1998,10:1151-1161. [32] GONG Z,LEE H,XIONG L,et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J]. Proc Natl Acad Sci USA,2002,99:11507-11512.[33] GONG Z,DONG C H,LEE H,et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. Plant Cell,2005,17:256-267.。