正反比例的比较
- 格式:ppt
- 大小:230.50 KB
- 文档页数:16
1、正比例的意义是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用关系式表示:x÷y=k (一定)还可表示为:x=ky以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时,应注意已知的两种量必须是两种相关联的量(也就是有关系的两种量),有些量,虽然也是一种量随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成比例的量。
“正反比例”归纳:相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。
正比例中相关联的两种量的变化方向是一致的,即:同时扩大或同时缩小,关键是:相对应的两个数的“比值一定,也就是商一定”;反比例中两种量的变化方向是相反的,即:一个量扩大,则另一个量缩小,一个缩小,另一个量则扩大,关键是:相对应的两个数的“积一定”。
不同点:正比例的定量(即不变的量)是两个变量中相对应的两个数的比值。
反比例的定量(即不变的量)是两个变量中相对应的两个数的积。
②正比例的图像时上升直线;反比例是曲线。
③公式不同:正比例是(x y=k(一定)),反比例是(xy=k(一定))。
④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。
门诊医院:举例:当路程一定时,已行路程与未行路程成比例吗?为什么?分析:虽然这里的已行路程和未行路程也是相关联的两个量,但是它们的变化规律是增加或减少的数,换句话说已行路程与未行路程不是一个量随另一个量的扩大而扩大或缩小而缩小,也就是它们之间不能相乘,也不能相除,得不到一个积或一个商,所以它们不成比例。
正反比例比较知识点总结正反比例是数学中常见的一种比例关系,表现为一种正向的变化和一种反向的变化之间的对应关系。
在现实生活中,正反比例关系也经常出现,比如物体的体积和压力、时间和速度、成本和产量等之间都存在着正反比例关系。
在数学中,我们通常用两个变量x和y表示正反比例关系,其中x表示自变量,y表示因变量。
在正比例关系中,当x增大时,y也随之增大;而在反比例关系中,当x增大时,y却相应地减小。
正反比例关系可以用等式y=kx表示,其中k称为比例常数。
当k>0时,表示正比例关系;当k<0时,表示反比例关系。
正反比例关系在数学中有着重要的应用,特别是在解决实际问题中,比如物理、经济、工程等领域。
在这些领域中,正反比例关系可以帮助我们更好地理解和分析问题,为实际应用提供便利。
下面我们将从数学、物理、经济和工程等方面来具体分析正反比例关系的应用。
一、在数学中的应用1.1 正反比例关系的解题方法在数学中,我们经常会遇到一些与正反比例关系有关的题目,如物体的价钱和重量成正比,时间和距离成反比等。
这些问题可以通过建立方程来求解。
例如,一个物体的重量和价格成正比,如果物体的重量是3kg,价格是45元,求每kg的价格是多少。
设每kg的价格为x元,则可以建立等式45=3x,解得x=15。
因此,每kg的价格是15元。
1.2 正反比例关系的图像和性质在数学中,我们可以利用图像来描述正反比例关系。
对于正比例关系来说,图像是一条通过原点的直线,斜率就是比例常数k;而对于反比例关系来说,图像是一条不通过原点的曲线。
正反比例关系还有一个重要的性质,就是两个变量的乘积是一个常数,即y=kx,所以称为正反比例关系。
1.3 正反比例的相关定理在数学中,还有一些与正反比例关系相关的定理,如等距离定理、平行定理等。
这些定理在解决用正反比例关系求解的问题是非常有用的。
二、在物理中的应用2.1 压力和体积的关系在物理中,压力和体积的关系是一个常见的正反比例关系。
正比例和反比例的比较教学内容正比例和反比例的比较教学目标1.通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系.2.进一步发展学生的分析、比较、抽象、概括的能力.渗透对立统一的观点.教学重点正、反比例的联系和区别教学难点能正确判断正、反比例教学准备多媒体课件教学过程一、复习准备1:什么是成正比例的量?用字母应如何表示?引导学生回答出:两种相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
成正比例关系的量有一个重要的特点:相对应的两个数的比值(也就是商)一定。
如果用x、y来表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y=k(一定)x2:什么是成反比例的量?用字母应如何表示?引导学生回答出:两种相关联的量,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同倍数,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
成反比例关系的量有一个重要的特点:相对应的两个数的积一定。
如果用x、y来表示两种相关联的量,用字母k表示它们的积(一定),反比例关系可以表示为:x·y=k(一定)(根据学生的回答,课件同步显示。
)3、判断下面每题中两种量成正比例还是成反比例(1)单价一定,数量和总价。
(正比例)(2)路程一定,速度和时间。
(反比例)(3)工作时间一定,工作总量和工作效率。
(正比例)(4)长方形的面积一定,长和宽。
(反比例)(抽学生回答,全班反馈。
)二、新授教学1、教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.2、观察下面的两个表,根据表分别填空。
在表1中相关联的量是(路程)和(时间),(路程)随着(时间)变化,(速度)是一定的。
因此,时间和路程成(正)比例关系。
正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.正方形的周长与边长圆的周长与直径路程比时间等于速度(一定)反比例:两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用x×y=k(一定)来表示。
1.百米赛跑,路程100米不变,速度和时间是反比例;2.排队做操,总人数不变,排队的行数和每行的人数是反比例;3.做纸盒子,总个数一定,每人做的个数和人数成反比例;4.买东西(实际就用文具用品),总钱数一定,它的单价和数量是反比例;5.长方形的面积一定,长和宽是反比例;6.长方体的体积一定,底面积和高是反比例。
7.等分一块蛋糕,每人分到的蛋糕与人数成反比例。
8.总价一定,单价与数量成反比例.9.长方体体积一定,底面积与高成反比例10.总纸盒一定,每人做的个数与人数成反比例反比例的意义形如y=k;x*y=k乘1/x(k不等于0)的函数叫做反比例函数,k叫做反比例系数。
y*x=k(一定),这是求反比例的公式。
编辑本段反比例的实质两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用xy=k(一定)k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,它减少了,另一样事物增加,这两个事物的关系就叫做反比例关系。
编辑本段正比例和反比例之间的相互转化当正比例中的x值(自变量的值),转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。
编辑本段生活中的反比例1.百米赛跑,路程100米不变,速度和时间成反比例(即路程一定,速度和时间成反比例);2.排队做操,总人数不变,排队的行数和每行的人数成反比例;3.做纸盒子,总个数一定,每人做的个数和人数成反比例;4.买东西(实际就用文具用品),总价一定,它的单价和数量是反比例;5.长方形的面积一定,长和宽是反比例(提示:但是长方形的周长与长宽不成比例【既不成正比例也不成反比例】);6.长方体的体积一定,底面积和高是反比例。