华师大版初中数学七年级上册期中测试题(一)
- 格式:doc
- 大小:197.50 KB
- 文档页数:4
华师大版七年级上册数学期中考试试题一、单选题1.下列式子中不是整式的是( )A .23x -B .2a b a -C .12x y +D .0 2.计算1920-+等于( )A .39-B .1-C .1D .39 3.太阳直径大约是1392000千米,这个数据用科学记数法可表示为( ) A .1.392×106 B .13.92×105 C .13.92×106 D .0.1394×107 4.下列结论正确的是( ) A .4-与()4+-互为相反数B .0的相反数是0C .23-与32互为相反数D .54-本身是相反数 5.下列计算正确的是( )A .6410-+=-B .077-=C .()1.3 2.10.8---=D .()440--=6.如图,数轴上A B 、两点分别对应有理数a b 、,则下列结论正确的是( )A .0ab >B .0a b ->C .0a b +>D .a b > 7.某种速冻水饺的储藏温度是182C -±,四个冷藏室的温度如下: A 冷藏室:17C -;B 冷藏室:22C -;C 冷藏室:18C -;D 冷藏室:19C -.则不适合储藏此种水饺的是( ) A .A 冷藏室B .B 冷藏室C .C 冷藏室D .D 冷藏室8.下列说法:①0是绝对值最小的有理数;②相反数大于自身的数是负数;③数轴上原点两侧的数互为相反数;④两个数相互比较绝对值大的反而小.其中正确的是( )A .①②B .①③C .①②③D .②③④9.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米 10.下列说法中,正确的个数是( )①a -表示负数;②多项式2223721a b a b ab -+-+的次数是3; ③单项式229xy -的次数为3; ④若x x =-,则0x <; ⑤若()23220m n -++=,则3,2m n ==.A .0B .1C .2D .3 11.下列各数中,最大的数是( )A .|﹣3|B .﹣2C .0D .112.“比a 的4倍大3的数”用代数式表示为( )A .43a +B .()43a -C .()43a +D .43a -13.若25-m x y 与n x y 是同类项,则m n +的值为A .1B .2C .3D .414.已知23x y -=-,则()()32526x y x y ---+的值是( )A .6-B .12C .36-D .18 15.若代数式()()43235153x m x n x x -++--+不含3x 和2x ,则m.n 值为( )A .m=-5,n=-1B .m=5,n=1C .m=-5,n=1D .m=5,n=-1二、填空题16.数轴上点A 和点B 表示的数分别为4-和2,把点A 向右平移________个单位长度,可以使点A 到点B 的距离是2( )A .2B .4或6C .6或8D .4或817.有理数5.614精确到百分位的近似数为__________.18.绝对值大于1而小于4的整数有____________个,选取其中的两个数相乘,其积最小是__________.19.观察下面一组数:1,2,3,4,5,6,7----···,将这组数排成如图2的形式,按照如图2规律排下去,()1第10行中从左边数第4个数是________;()2前7行的数字总和是____________.三、解答题20.计算:()1()()75173725;-----()2()44349.9--+⨯-21.()1合并同类项:()()223241m mn m mn --++-; ()2先化简,再求值:()()()22252 1 43823a a a a a a ++--++-,其中13a =. 22.大客车上原有()3a b -人,中途下车一半人,又上车若干人,这时车上共有乘客()85a b -人.(1)问:上车乘客有多少人?(2)在(1)的条件下,当12a =,10b =时,上车乘客是多少人?23.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?24.2018年9月第22号台风“山竹”给某地造成严重影响.蓝天救援队驾着冲锋舟沿一条东西方向的河流营救灾民,早晨从A 地出发,晚上最后到达B 地,约定向东为正方向,当天航行次记录如下(单位:千米):18,﹣8,15,﹣7,11,﹣6,10,﹣5问:(1)B 地在A 地的东面,还是西面?与A 地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?25.学习有理数得乘法后,老师给同学们这样一道题目: 计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下: 聪聪:原式=﹣124925×5=﹣12495=﹣24945; 明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945; (1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算:291516×(﹣8)26.如图:在数轴上,点A 表示a, 点B 表示b, 点C 表示c,b 是最大的负整数,且a,c 满足2||350()a c ++-= ()1a = ________,b =_________,c =_____________()2若将数轴折叠,使得A 点与C 点重合,则点B 与数____________表示的点重合;()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后, ①请问:32BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.②探究:若点A C 、向右运动,点B 向左运动,速度保持不变,34BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1.B【解析】【分析】根据整式的概念判断即可.【详解】解:A 、23x -是整式;B 、2a b a-,分母中含有字母,不属于整式; C 、12x y +是整式;D 、0是整式;故选B .【点睛】本题考查的是整式的概念,单项式和多项式统称为整式,凡分母中含有字母的代数式都不属于整式.2.C【解析】【分析】根据有理数加法法则进行计算即可.【详解】-19+20=+(20-19)=1,故选C .【点睛】本题考查了有理数的加法,熟练掌握“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,再用较大绝对值减去较小绝对值”是解题的关键.3.A【解析】【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】将1392000用科学记数法表示为:1.392×106.故选:A .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】根据相反数的定义对各小题进行逐一分析即可.【详解】解:A. 4-与+4互为相反数, 故本小题错误;B. 0的相反数是0,故本小题正确;C.23-与23互为相反数,故本小题错误;D.54-与54互为相反数,故本小题错误.故选B.【点睛】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.5.C【解析】【分析】根据有理数的加法法则和减法法则逐一计算可得.【详解】解:A.−6+4=−2,此选项错误;B.0−7=−7,此选项错误;C.−1.3−(−2.1)=−1.3+2.1=0.8,此选项正确;D.4−(−4)=4+4=8,此选项错误.故选C.【点睛】本题主要考查有理数的加减混合运算,解题的关键是掌握有理数的加法法则和减法法则.6.B【解析】【分析】在数轴上的位置,得b<−1<0<a<1,然后再根据绝对值、有理数的加法以及有理数的乘法等知识对四个选项逐一分析即可.【详解】解:由数轴上A、B两点分别分别表示的有理数a、b知,b<−1<0<a<1,所以,A. ab<0,故错误;a b->,故正确;B. 0C. a+b<0,故错误;D. |a|<|b|,故错误.故选B.【点睛】本题考查了数轴、绝对值、有理数的加法以及有理数的乘法等知识.先观察a,b 7.B【解析】【分析】先出储藏温度的范围是解题的关键,然后选择答案即可.【详解】解:∵−18−2=−20(℃),−18+2=−16(℃),∴速冻水饺的储藏温度是−20℃~−16℃,∵−17℃、−18℃、−19℃、−22℃四个数中,只有−22℃不在该范围内,∴不适合储藏此种水饺的是−22℃,故选B.【点睛】此题考查了正数与负数,有理数的加法及减法,求出储藏温度的范围是解题的关键. 8.A【解析】【分析】根据有理数的概念,相反数的定义,绝对值的性质对各选项分析判断即可得解.【详解】解:①0是绝对值最小的有理数,故本选项正确;②相反数大于自身的数是负数,故本选项正确;③数轴上原点两侧的数不一定互为相反数,故本选项错误;④两个负数相互比较绝对值大的反而小,故本选项错误.故选A.【点睛】本题考查了有理数的概念,相反数的定义,以及绝对值的性质,熟记概念与性质是解题的关键.9.C【解析】【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.10.B【解析】【分析】直接利用单项式以及多项式的次数确定方法以及偶次方、绝对值的性质分别分析得出答案.【详解】解:①当0a>时,−a表示负数,错误;②多项式2223721a b a b ab-+-+的次数是是4,故此选项错误;③单项式229xy-的次数为3,正确;④若x x =-,则x=0,故此选项错误; ⑤若()23220m n -++=,则m=3,n=−2,故此选项错误.故选B .【点睛】此题主要考查了单项式以及多项式的次数以及偶次方、绝对值的性质,正确把握相关定义是解题关键.11.A【解析】试题分析:|﹣3|=3,根据有理数比较大小的方法,可得3>1>0>﹣2,所以|﹣3|>1>0>﹣2,所以各数中,最大的数是|﹣3|.故选A .考点:有理数大小比较.12.A【解析】【分析】根据题意得出a 的4倍即为:4a ,再加3即可.【详解】解:由题意可得:4a+3.故选A .【点睛】此题主要考查了列代数式,正确理解题意是解题关键.13.C【解析】 ∵25m x y -与nx y 是同类项,∴1,32m m n n =⎧⇒+=⎨=⎩.故选C . 14.B【解析】【分析】把23x y -=-代入计算即可求出值.【详解】解:∵23x y -=-,∴()()32526x y x y ---+=3×(-3)-5×(-3)+6=12,故选B .【点睛】此题考查了代数式求值,利用了整体代入的思想.15.C【解析】【分析】由已知条件可列出关于m 、n 的方程后求解.【详解】解:由题意得:所给多项式不含3x 和2x 项,可得n-1=0和-(m+5)=0,即m=-5,n=1,故选C.【点睛】本题主要考查单项式与多项式的基本概念和整式的化简.16.D【解析】【分析】分向右平移后点A 在点B 的左边和右边两种情况进行讨论即可求解.【详解】解:向右平移后点A 在点B 的左边,点A 向右平移2−2−(−4)=4个单位长度,向右平移后点A 在点B 的右边,点A 向右平移2+2−(−4)=8个单位长度.故选D .【点睛】本题考查的是数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键. 17.5.61【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.614精确到百分位,得到的近似数为5.61.故答案为5.61.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.4 9-【解析】【分析】绝对值大于1而小于4的整数,再得出答案即可; 根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.【详解】解:绝对值大于1而小于4的整数有±2,±3,共4个; 所得乘积最小为:(−3)×3=-9.故答案为:4;-9.【点睛】本题考查了有理数的大小比较和绝对值,有理数的乘法, 绝对值大于1而小于4的整数是解此题的关键.19.85- 25-【解析】【分析】(1)奇数为负,偶数为正,每行的最后一个数的绝对值是这个行的行数n 的平方,所以第9行最后一个数字的绝对值是81,第10行从左边第4个数是−(81+4)=−85.(2)找到前7行的数字个数,再两个一组计算即可求解.【详解】解:(1)92=81,−(81+4)=−85.故第10行中从左边数第4个数是−85.故答案为:−85;(2)(1+3+5+7+9+11+12)÷2×1−72=−25.故前7行的数字总和是−25.故答案为:−25.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.20.(1)80;(2)89-【解析】【分析】(1)首先把减法统一成加法,然后进用加法结合律运算即可;(2)先计算乘方,再计算乘除,最后再计算减法即可得到结果;.【详解】解:(1)原式=75+17-37+25=80,(2)原式=-81-4-4=-89.【点睛】本题主要考查了有理数的混合运算,熟记有关法则是解决本题的关键.21.(1)2274;m mn -+-(2)3311a -,0【解析】【分析】(1) 先对原式去括号,然后合并同类项即可解答;(2) 先对原式去括号,然后合并同类项,最后将a 的值代入计算即可.【详解】解:(1)原式=2263444m mn m mn -+++-=2274;m mn -+-(2)原式=222521123283a a a a a a ++-+-+-=3311a - 当13a =时,原式=33×13-11=0 【点睛】本题考查了去括号和合并同类项,整式的化简求值,熟练掌握去括号和合并同类项的法则是解决本题的关键.22.(1)13922a b ⎛⎫- ⎪⎝⎭人;(2)33人. 【解析】【分析】(1)中途下车一半人后剩余()()1332⎡⎤---⎢⎥⎣⎦a b a b 人,用最终的人数减去下车后的人数即可得结果;(2)将数据代入(1)中的表达式计算即可.【详解】解:(1)根据题意得:()()()185332a b a b a b ⎡⎤-----⎢⎥⎣⎦ 318522a b a b =--+ 13922a b ⎛⎫=- ⎪⎝⎭人; (2)当12a =,10b =时, 原式139********=⨯-⨯=(人). 【点睛】本题考查整式的加减和求值,根据题意列出等量关系是解题的关键.23.(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a ,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.24.(1)东面,相距28千米;(2)需要补充10升.【解析】【分析】(1)把行驶的记录相加,然后根据结果的正负情况进判断,如果是正数,B地在A地的东方,是负数,B地在A地的西方;(2)先求出行驶记录的所有数的绝对值的和,然后再利用有理数的乘法进行计算即可.【详解】解:(1)(+18)+(-8)+15+(-7)+11+(-6)+10+(-5),=18-8+15-7+11-6-+10-5,=18+15+11+10-8-7-6-5,=54-26,=28,所以B地在A地东方,相距28千米处;(2)|+18|+|-8|+|15|+|-7|+|11+|-6||+|10|+|-5|,=18+8+15+7+11+6+10+5,=80千米,∴途中至少需要补充:80×0.5-30=10升.【点睛】本题考查了有理数的加法,正数和负数,是常见题型,比较简单,但运算比较复杂,(2)题是同学们容易出错的地方,需要仔细.25.(1)明明解法较好;(2)还有更好的解法;解法见解析;(3)1 2392 .【解析】【分析】(1)根据计算过程的步骤长短判断出明明的解法好;(2)把492425写成(50-125),然后利用乘法分配律进行计算即可得解; (3)把191516写成(20-116),然后利用乘法分配律进行计算即可得解. 【详解】解:(1)因为明明的计算步骤比较少,所以明明的解法较好(2)还有更好的解法24149(5)(50)(5)2525150(5)()(5)251250542495⨯-=-⨯-=⨯-+-⨯-=-+=- (3)1529(8)161(30)(8)16130(8)()(8)161240212392⨯-=-⨯-=⨯-+-⨯-=-+=- 【点睛】本题考查有理数的乘法分配律,解题的关键是掌握乘法分配律.26.(1)-3,-1,5;(2)3;(3)①32BC AB -的值不随着时间t 的变化而改变,值为14;②当3 20t -<时, 34BC AB -的值随着时间t 的变化而改变;当320t ->时, 34BC AB -的值不随着时间t 的变化而改变,值为26.【解析】【分析】(1)根据非负数的性质即可得到结论;(2)先求出对称点,即可得出答案;(3)①t 秒后,2232AB t t t =++=+,3626BC t t t =-+=+,代入32BC AB -计算即可得到答案;②先求出()34346432BC AB t t -=+--,再分当3 20t -<时和当320t ->时,讨论求解即可.【详解】解:()1∵2||350()a c ++-=,∴a+3=0,c−5=0,解得a=−3,c=5,∵b 是最大的负整数,∴b=-1故答案为:−3,-1,5.(2)点A 与点C 的中点对应的数为:3512, 点B 到1的距离为2,所以与点B 重合的数是:1+2=3.故答案为:3.()3①t 秒后,2232AB t t t =++=+,3626BC t t t =-+=+,()()3232623214BC AB t t -=+-+=.故32BC AB -的值不随着时间t 的变化而改变; ②2232AB t t t =+-=-.3646BC t t t =++=+,()34346432BC AB t t -=+--.当3 20t -<时,原式2410,34t BC AB =+-的值随着时间t 的变化而改变;当320t ->时,原式26,34BC AB =-的值不随着时间t 的变化而改变.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
一、选择题1.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0 C .3 D .6 2.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1003.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .854.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2B .﹣2C .0D .45.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个6.下列各对单项式中,属于同类项的是( ) A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a7.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个8.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12B .扩大到原来的10倍C .缩小到原来的110D .扩大到原来的2倍9.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样10.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( ) A .提高20元 B .减少20元 C .提高10元 D .售价一样 11.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±12.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 14.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.15.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.16.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______; (2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______; (3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______. 17.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.18.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.19.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.20.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____; (2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____; (3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.三、解答题21.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数. 22.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 23.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 24.一种商品每件成本a 元,原来按成本增加22%定出价格. (1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?25.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
期中检测卷时间: 120分钟 总分值: 120分班级: __________ 姓名: __________ 得分: __________一、选择题(每题3分, 共30分)1.如果盈利5%记作+5%, 那么-3%表示( )A. 亏损3%B. 亏损8%C. 盈利2%D. 少赚3%2.成都地铁自开通以来, 开展速度不断加快, 现已成为成都市民主要出行方式之一, 今年4月29日成都地铁平安运输乘客约181万乘次, 又一次刷新客流记录, 这也是今年以来第四次客流记录的刷新, 用科学记数法表示181万为( )×105×106×107 D. 181×1043. 以下各组中互为相反数的是( )A. -2与-B. |-2|和2C. -2.5与|-2|D. - 与4.“a, b 两数的平方和〞用代数式表示为( )A. a2+b2B. (a +b)2C. a +b2D. a2+b5.以下判断中, 错误的选项是( )A. 1-a -ab 是二次三项式B. -a2b2c 与 是同类项C.a 2+b 2ab 是一个单项式D.34πa 2的系数是34π 6. 某地清晨时的气温为-2℃, 到中午时气温上升了8℃, 再到黄昏时气温又下降了5℃,那么该地黄昏气温为( )A. -1℃B. 1℃C. 3℃D. 5℃7. 以下各式计算正确的选项是( )A. -7-2×5=-45B. 3÷ × =3C. -22-(-3)3-(-1)=23D. 2×(-5)+22-3÷ =08.假设a, b 互为相反数, c, d 互为倒数, m 的绝对值是2, 那么 +m2-cd 的值是( )A. 2B. 3C. 4D. 59.如图, 该图形的周长是( )A. 16cmB. 18cmC. 10cmD. 12cm10.用大小相等的小正方形按一定规律拼成以下图形, 那么第n 个图形中小正方形的个数是( )A. 2n +1B. n2+1C. n2+2nD. 5n -2二、填空题(每题3分, 共24分)11.以下式子中, 多项式有________________, 单项式有________________(填序号).①2a -1;②x ;③x 29π;④x 2-3x +6;⑤5a -13;⑥s =πr 2;⑦13πr 2h ;⑧-0.1. 12. 将2.95用四舍五入法准确到十分位, 其近似值为________.13.(a -1)x2ya +1是关于x, y 的六次单项式, 那么这个单项式的系数是________.14. 比拟大小: -(-3.14)________- .15.数a, b, c 在数轴上的位置如下图, 化简|a +b|-|c -b|的结果是________.16. 假设代数式x2+2x -1的值为0, 那么2x2+4x +1的值为________.17.假设规定运算符号“★〞具有性质: a ★b =a2-ab.例如(-1)★2=(-1)2-(-1)×2=3, 那么1★(-2)=________.18. 观察以下等式:第1层 1+2=3第2层 4+5+6=7+8第3层 9+10+11+12=13+14+15第4层 16+17+18+19+20=21+22+23+24…在上述数字宝塔中, 从上往下数, 2021在第________层.三、解答题(共66分)19. (16分)计算:(1)(-3.14)+(+4.96)+(+2.14)+(-7.96);(2)-999899×9;(3)(-2.5)÷3÷⎝⎛⎭⎫-16×(-22);(4)-×[-2-(-3)2].20.(6分)A=3x2+3y2-5xy, B=2xy-3y2+4x2, 求:(1)2A-B;(2)当x=3, y=-时, 求2A-B的值.21. (7分)如图, 将边长为a的小正方形和边长为b的大正方形放在同一水平面上(b>a >0).(1)用a, b表示阴影局部的面积;(2)计算当a=3, b=5时, 阴影局部的面积.22. (7分)xy<0, x<y, 且|x|=1, |y|=2.(1)求x和y的值;(2)求代数式3x2-5xy+4y的值.23. (8分)迪雅服装厂生产一种夹克和T恤, 夹克每件定价100元, T恤每件定价50元. 厂方在开展促销活动期间, 向客户提供两种优惠方案: ①买一件夹克送一件T恤;②夹克和T 恤都按定价的80%付款. 现某客户要到该服装厂购置夹克30件, T恤x件(x>30).(1)假设该客户按方案①购置, 夹克需付款________元, T恤需付款__________元(用含x 的式子表示);假设该客户按方案②购置, 夹克需付款____________元, T恤需付款____________元(用含x的式子表示);(2)假设x=40, 通过计算说明按方案①、方案②哪种方案购置较为合算?(3)假设两种优惠方案可同时使用, 当x=40时, 你能给出一种更为省钱的购置方案吗?试写出你的购置方案, 并说明理由.24. (10分)“十一〞黄金周期间, 淮安动物园在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数, 负数表示比前一天少的人数):(1)假设9月30日的游客人数记为a万人, 请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天?(3)假设9月30日的游客人数为2万人, 门票每人10元, 问黄金周期间淮安动物园门票收入是多少?25. (12分)某餐厅中1张餐桌可坐6人, 有以下两种摆放方式:(1)对于方式一, 4张桌子拼在一起可坐多少人?n张桌子呢?对于方式二呢?(2)该餐厅有40张这样的长方形桌子, 按方式一每5张拼成一张大桌子, 那么40张桌子可拼成8张大桌子, 共可坐多少人?按方式二呢?(3)在(2)中, 假设改成每8张拼成一张大桌子, 那么两种方式分别可坐多少人?参考答案与解析1.10. C11.①④⑤②③⑦⑧13. 214.>15.a+c18.44解析: 第一层: 第一个数为12=1, 第二层: 第一个数为22=4, 第三层: 第一个数为32=9.又因为1936<2021<2025, 所以在上述数字宝塔中, 从上往下数, 2021在第44层, 故答案为44.19. 解:(1)原式=-4;(4分)(2)原式=-899 ;(8分)(3)原式=-20;(12分)(4)原式=11.(16分)20. 解: (1)2A-B=2(3x2+3y2-5xy)-(2xy-3y2+4x2)=6x2+6y2-10xy-2xy+3y2-4x2=2x2+9y2-12xy;(3分)(2)当x=3, y=-时, 2A-B=2×32+9×-12×3×=18+1+12=31.(6分)21. 解: (1)阴影局部的面积为b2+a2+ab;(4分)(2)当a=3, b=5时, b2+a2+ab=×25+×9+×3×5=.(7分)22.解:(1)因为xy<0, x<y, 所以x<0, y>0.又因为|x|=1, |y|=2, 所以x=-1, y=2;(4分)(2)原式=21.(7分)23. 解: (1)300050(x-30)240040x(2分)(2)当x=40, 按方案①购置所需费用=30×100+50(40-30)=3000+500=3500(元);(3分)按方案②购置所需费用=30×100×80%+50×80%×40=2400+1600=4000(元), 所以按方案①购置较为合算;(4分)(3)先按方案①购置夹克30件, 再按方案②购置T恤10件更为省钱.(5分)理由如下: 先按方案①购置夹克30件所需费用为3000元, 按方案②购置T恤10件的费用为50×80%×10=400(元), 所以总费用为3000+400=3400(元), 小于3500元, 所以此种购置方案更为省钱.(8分)24. 解:(1)(a+2.4)万人;(3分)(2)10月3日;(6分)(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7aa=2时, (7×2+13.2)×10=272(万元). (9分)答: 黄金周期间淮安动物园门票收入是272万元. (10分)25. 解:(1)第一种中, 只有一张桌子是6人, 后边多一张桌子多4人.4张桌子可以坐18人, n 张桌子可以坐的人数为6+4(n-1)=4n+2(人). (2分)第二种中, 有一张桌子是6人, 后边多一张桌子多2人, 4张桌子可以坐12人, n张桌子可以坐的人数为6+2(n-1)=2n+4(人);(4分)(2)方式一:40张桌子拼成8张大桌子可以坐8×(4×5+2)=176(人), (6分)方式二:40张桌子拼成8张大桌子可以坐8×(2×5+4)=112(人);(8分)(3)方式一:40张桌子拼成5张大桌子可以坐5×(4×8+2)=170(人);(10分)方式二:40张桌子拼成5张大桌子可以坐5×(2×8+4)=100(人). (12分)。
华师大版七年级上期数学期中试卷一. 选一选(每小题3分;共30分) 1、下列说法中;不正确的是( )A. 0既不是正数;也不是负数B. 1是绝对值最小的数C. 0的相反数是0D. 0的绝对值是0 2、|–2|的相反数是( )A. 21-B. –2C. 21D. 23、23-+()23-的值是( )A. –12B. 0C. –18D. 18 4、下面的说法正确的是( )A. –2不是单项式B. –a 表示负数C.3ab 5 的系数是3 D. x +ax+1不是多项式 5、多项式x 5y 2+2x 4y 3-3x 2y 2-4xy 是( ) A. 按x 的升幂排列 B. 按x 的降幂排列 C. 按y 的升幂排列 D. 按y 的降幂排列6、五个连续奇数中最大的一个数是a ;那么其余四个数的和是( ) A. 4a B. 4a -10 C. 4a -20 D. 4a +207、如果知道a 与b 互为相反数;且x 与y 互为倒数;那么代数式|a +b|-2xy 的值为( ) A. 0 B. -2 C. -1 D. 无法确定8、某种品牌的彩电降价30%以后;每台售价为a 元;则该品牌彩电每台原价为( ) A. 0. 7a 元 B. 0. 3a 元 C.3.0a 元 D. 7.0a 元 9、某种细菌在培养过程中;每半小时分裂一次(由一个分裂为两个)。
若这种细菌由1个分裂为16个;那么这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时10、下面一组按规律排列的数:1;2;4;8;16;……;第2002个数应是( ) A. 20022 B. 20022-1C. 20012D. 以上答案不对二. 填一填(每小题3分;共30分)11、-2的相反数是 ;3的倒数是 ;绝对值等于3的数是 。
12、观察下列数字的排列规律;然后在括号内填入适当的数: 3;-7;11;-15;19;-23;( )13、比较大小:0 -3. 1;-(+5) (-2)3。
七年级第一学期期中测试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法正确的是( )A.两个有理数的差一定小于被减数B.两个有理数的和一定比这两个有理数的差大C.减去一个负数,差一定大于被减数D.减去一个正数,差一定大于被减数2. 已知3y 2-2y +6的值为8,那么6y 2-4y +1的值为( )A.3B.4C.5D.63. “天上星星有几颗,7后跟上22个0”这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )A.2070010⨯B.23710⨯C.230.710⨯D.22710⨯4.已知a=-(-2)2,b=-(-3)3, c=-(-42),则―[a ―(b ―c)]的值为( )A .31 B.-15 C.15 D.-315. 下列说法:①x 的系数是1,次数是0;②式子-0.3a 2,5x 2y 2,-5,m 都是单项式;③单项式-7x 2y 2z的系数是-7,次数是4;④-3лa 5的系数是-3л其中正确的是( )A .①和② B.③和④ C.①和③ D.②和④6. 已知多项式A =x 2+2y 2-z 2 , B =-4x 2+3y 2-2z 2 ,且A +B +C =0,则C 为( )A.5x 2-y 2-z 2B.3 x 2-5y 2-z 2C. 3x 2-y 2-3z 2D. 3x 2-5y 2+3z 27. 绝对值大于3而不大于6的整数有( )A .3 B.4 C.6 D.多于6个8. 如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是( )A.B. C.D.9. 已知4a 5b 2和-5a 3n b 2是同类项,则代数式12n-24的值是( ) A .-3 B .-4 C .-5 D .-610. 已知4个矿泉水瓶可以换矿泉水一瓶,现有15个空瓶,若不交钱,最多可以喝( )瓶。
七年级数学期中考试试卷题号 一二 三 四 五 六 总 分 1-10 11-20 21~26 27 28 29 得分相信你一定会有出色的表现一、细心地选一选题号 1 2 3 4 5 6 7 8 910 答案题表中,否则不给分.1、在下列各平面图形中,是圆锥的表面展开图的是( )2、给出四个几何体:① 球 ② 圆锥 ③ 圆柱 ④ 棱柱用一个平面去截上面的几何体,其中能截出圆的几何体有( )A 、4个B 、3个C 、2个D 、1个. 3、已知单项式n y x 35-与315y x m +是同类项,则n m -的值为( ) A 、5 B 、1- C 、1 D 、5- 4、下列计算结果正确的是( )A 、xy y x 523=+B 、2222743n m mn n m =+C 、022=-x x -D 、a a a -=-765、单项式232yz x -的系数和次数分别是( )A 、-1,2B 、-1,6C 、21-,6D 、21-,56、22)2(2-+-的值是( )A 、0B 、-4C 、4D 、16 7、在下面的图形中,不是正方体的表面展开图的是( )评卷人8、一个数的绝对值等于它的相反数,那么这个数是( )A 、是正数B 、是负数C 、不是正数D 、不是零9、0%20135|6|3222,,),(),(,,在--------这7个数中,正数的个数为( )A 、2个B 、3个C 、4个D 、5个 10、观察下列算式:,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律,你认为302的个位数字是( )、A. 2B. 4C. 6D. 8二、想好了,再填:(每小题3分,共30分)11、如果向南走20米记为是-20米,那么向北走70米记为是_____ ,-50米表示 。
12、-5的相反数是 ,321-的倒数是 。
13、数轴上到原点距离为5的点所表示的数为 。
期中测试一、选择题(共10小题;共50分)1.如果30m +表示向东走30m ,那么向西走40m 表示为( ) A .40m +B .40m -C .30m +D .30m -2.2013-的相反数是( )A .12013-B .2013-C .12013 D .20133.如果213a x +与35x 是同类项,那么a 的值是( )A .0B .1C .2D .34.下列等式变形中,错误的是( ) A .由a b =,得55a b +=+ B .由a b =,得33a b=-- C .由22x y +=+,得x y =D .由33x y -=-,得x y =-5.下列式子:22x +,14a +,237ab ,abc,5x -,0中,整式的个数是( )A .6B .5C .4D .36.下列各组数中,数值相等的是( ) A .32-和3(2)-B .23和32C .23-和2(3)-D .2(32)-⨯和232-⨯7.下列说法错误的是( ) A .2231x xy --是二次三项式B .1x --不是单项式C .223xy π-的系数是23π-D .222ab -⨯的次数是68.规定*是一种新的运算符号,且*a b ab a b =++,例如:2*3232311=⨯++=,那么(3*4)*1=( )A .19B .29C .39D .49 9.已知多项式233x x +=,可求得另一个多项式2394x x +-的值为( ) A .3B .4C .5D .610.数轴上表示整数的点称为整点.某数轴上的单位长度是1cm ,若在这个数轴上随意画出一条长2016cm 线段AB ,则线段AB A .2017个或2018个 B .2016个或2017个 C .2015个或2016个D .2014个或2015个 二、填空题(共6小题;共30分)11.方程43135x -=的解是________. 12.国家统计局数据显示,截至2014年末全国商品房待售面积约为62 200万平方米,该数据用科学记数法可表示为________平方米.13.把多项式3221x x x -+-+按字母x 升幂排列为:________.14.比较大小:15-________13-.(选用>、<、=号填写)15.某商品的进价为m 元,提价%a 后进行销售,一段时间后在现有售价下降低%b 进行促销,则促销价是________元.(用代数式表示)16.观察下面点阵图和相应的等式,探究其中规律: 按此规律1357(21)n +++++-=________.三、解答题(共9小题;共72分) 17.计算.(1)56119513-++-+-;(2)47511(1)3036(5)9612⎡⎤⎛⎫-+-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦.18.化简.(1)222243224x y xy y x +---; (2)()()225332a b a b ---.19.先化简,再求值:()22232ab a b a b ab +--,其中1a =-,2b =-.20.10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:0.5+,0.3+,0,0.2-,0.3-, 1.1+,0.7+,0.2-,0.6+,0.7+.这10袋大米总重量是多少千克?21.若0ab <,求a b ab a b ab++的值.22.小王上周五在股市以收盘价每股25元买进某公司的股票1 000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):的收益情况如何?23.根据等式和不等式的性质,可以得到:若0a b ->,则a b >.若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式2542m m -+与2447m m --的值之间的大小关系;(2)已知2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+,请你运用前面介绍的方法比较代数式A 与B 的大小.24.已知:b 是最小的正整数,且a ,b ,c 满足2(5)0c a b -++=,请回答问题: (1)请直接写出a ,b ,c 的值:a =________,b =________,c =________;(2)a ,b ,c 所对应的点分别为A ,B ,C ,开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和6个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.25.已知多项式533ax bx x c +++,当0x =时,该代数式的值为1-. (1)求c 的值;(2)已知当3x =时,该式子的值为9,试求当3x =-时该式子的值;(3)在第(2)小题的已知条件下,若有35a b =成立,试比较a b +与c 的大小?期中测试 答案一、 1.【答案】B 2.【答案】D 3.【答案】B 4.【答案】D 5.【答案】C 6.【答案】A 7.【答案】D 8.【答案】C 9.【答案】C 10.【答案】B 二、11.【答案】20x = 12.【答案】86.2210⨯ 13.【答案】2312x x x -+- 14.【答案】>15.【答案】(1%)(1%)m a b +- 16.【答案】2n 【解析】从1开始的连续2个奇数和是22,连续3个奇数和是23,连续4个,5个奇数和分别为24,25,……∴从1开始的连续n 个奇数的和:21357(21)n n +++++-=.三、17.【答案】(1)原式55611913=-+++--01722=+- 5=-(2)原式1(30283033)(5)=+--+÷-15(5)=+÷-11=- 0=18.【答案】(1)222243224x y xy y x +---()()222244322x x y y xy =-+-- 22y xy =-(2)()()225332a b a b ---2251536a b a b =--+ 229a b =-19.【答案】原式222322ab a b a b ab =+-+24a b ab =+当 1a =-,2b =-时,原式2(1)(2)4(1)(2)=-⨯-+⨯-⨯-1(2)8=⨯-+6=.20.【答案】5010(0.50.30.20.3 1.10.70.20.60.7)⨯++--+--++501.8=500 1.8=+(千克)答:这10袋大米总重量是501.8千克. 21.【答案】0ab <, a ∴与b 异号,∴原式111=-+-1=-22.【答案】周五收盘价格:2520.5 1.5 1.80.827+-+-+=(元),2710002510002510000.15%2710000.15%⨯-⨯-⨯⨯-⨯⨯ 270002500037.540.5=--- 1922=(元)答:小王在本周五以收盘价将全部股票卖出,他的收益1922元. 23.(1)()22542447m m m m -+---22542447m m m m =-+-++2=90m +>∴代数式2542m m -+大于代数式2447m m --.(2)2572A m m =-+,2773B m m =-+,22257277321A B m m m m m ∴-=-+-+-=--, 20m ≥,2210m ∴--<,则A B <.24.【答案】(1)1-(2)BC AB -的值不随着时间t 的变化而改变,其值是2,理由如下:点A 都以每秒2个单位的速度向左运动,点B 和点c 分别以每秒2个单位长度和5个单位长度的速度向右运动,44BC t ∴=+,42AB t =+,(44)(42)2BC AB t t ∴-=+-+=.【解析】是最小的正整数,1b ∴=.2(5)0c a b -++=,1a ∴=-,5c =.(2)具体解答过程参照答案.25.(1)把0x =代入代数式,得到5331ax bx x c c +++==-;1c ∴=-;(2)把3x =代入代数式,得到5353333339ax bx x c a b c +++=++⨯+=,53330a b c ∴++=;53331a b c +=-=,当3x =-时,原式53(3)(3)3(3)a b c =-+-+⨯-+()53339a b c =-+-+9c c =-+ 29c =- 29=-- 11=-(3)由(2)题得53331a b +=,即1927a b +=, 又35a b =,所以11527b b +=, 10432b ∴=>, 则503a b =>,0a b ∴+>, 10c =-<, a b c ∴+>.。
七年级数学期中考试卷第Ⅰ卷(100分)一、 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的. ) 1.2-=( ).A .0B . -2C .+2D .12.下列计算不正确...的是( ). A .2-5= -3 B .(-2)+(-5)= —7 C .2(3)-=-9D .(-2)-(-1)= -13.把351000进行科学记数法表示正确的是( ).A .0.351×106B .3.51×105C .3.51×106D .35.1×1044.下列说法正确的是( ).A .x 不是单项式B .0不是单项式C .-x 的系数是-1D .1x是单项式 5.下列各组式子中是同类项的是( ).A .4x 与4yB .244xy xy 与 C .2244xy x y 与 D .2244xy y x 与 6.下列计算中结果正确的是( ).A .4+5ab=9abB .66xy x y -=C .22330a b ba -= D .34712517x x x += 7.用算式表示“比-3℃低6℃的温度”正确的是( ).A .-3+6=3B .-3-6=-9C .-3+6=-9D .-3-6=-38.方程242+=-x x 的解是( ).A .2-B .6C .8D .109.下列解方程过程中,变形正确的是( ). A .由2x -1=3得2x =3-1 B .由 23(4)5x x -+= 得2345x x --= C .由-75x =76得x =-7675D .由2x -(1)x -=1得2x -x =0 10.三个连续的奇数中,最大的一个是2n +3,那么最小的一个是( ).A .21n -B .21n +C .2(1)n -D .2(2)n - 二、耐心填一填(本题有6个小题,每小题3分, 满分18分) 11.若23ma bc 为七次多项式,则m 的值为___________. 12.31()(12)46-⨯-=____________.13.数轴上表示数-3和2之间的所有整数(包括-3和2两个数)的和等于 .14.观察下面的数的排列规律,在空格处填上恰当的数: -1,3,-9,27, ,243,…15.代数式38x -与2互为相反数,则=x . 16.若313x +=,则6x 的值是 .三、用心答一答(本大题有9小题, 共102分,解答要求写出文字说明, 证明过程或计算步骤)17.计算(本题有2小题,每小题6分,满分12分)(1)()()136243-÷-+⨯-(2)221(3)602210--÷⨯+- 18.化简(本题有2小题,每小题6分,满分12分)(1) 223524x x x x +---+(2) 223(22)2(13)x x x x -+--+19.解下列方程(本题有2小题,每小题6分,满分12分) (1) 2255x x x -+=- (2)42(52)3()3x x -=--20.(本题满分8分)先化简,再求值:2222222(23)2(2)x y y x y x ++---,其中1,2x y =-=21.(本题满分8分)有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克)1234……n伸长量(厘米) 0.5 1 1.5 2 …… 总长度(厘米)10.51111.512……(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x 克时,用代数式表示此时弹簧的总长度.(3)当x =30克时,求此时弹簧的总长度.第Ⅱ卷(50分)22.(本题满分12分)(1)已知53,x -=求x 的值;(2)已知4n =,且520,x y n -+-=求8x y -+的值.23.(本题满分12分)根据某手机收费标准,从甲地向乙地打长途电话,前3分钟收费1.8元,3分钟后每分钟加收费0.8元.(1)若通话时间为x 分钟(x ≥3),则应收费多少元?(2)若小王按此标准打一个电话花了8.2元,则这个电话小王打了几分钟?24.(本题满分12分)小红做一道数学题“两个多项式A 、B ,B 为6542--x x ,试求A+B 的值”。
一、选择题1.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .42.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 3.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2 4.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2- B .2 C .2± D .3±5.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4 6.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1 7.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度8.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1 9.已知n 为正整数,则()()2200111n -+-=( ) A .-2 B .-1 C .0 D .210.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 2 11.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±12.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2± B .±1 C .2±或0 D .±1或0二、填空题13.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.14.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .15.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).16.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;17.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-]. 19.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.20.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.三、解答题21.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 22.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 23.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少? (2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 24.321032(2)(3)5-÷---⨯25.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 26.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a,b,c,d四个数的和是4,故选:D.【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.2.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B、由等边三角形周长公式可得3a表示这个等边三角形的周长,此选项不符合题意;C、由“售价=进价+利润”得售价为1.5a元,则2×1.5a=3a(元),此选项不符合题意;D、由题可知,这个两位数用字母表示为10×3+a=30+a,此选项符合题意.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.3.A解析:A【分析】由BC=2,C点所表示的数为x,求出B表示的数,然后根据OA=OB,得到点A、B表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C点所表示的数为x,∴B点表示的数是x-2,又∵OA=OB,∴B点和A点表示的数互为相反数,∴A点所表示的数是-(x-2),即-x+2.故选:A.【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.4.A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 5.A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.6.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 7.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.8.C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.9.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 10.A解析:A【分析】根据题意确定出a ,b ,c 中负数的个数,原式利用绝对值的代数意义化简,计算即可得到【详解】解:∵a 、b 、c 为非零有理数,且a+b+c=0∴a 、b 、c 只能为两正一负或一正两负.①当a 、b 、c 为两正一负时,设a 、b 为正,c 为负,原式=1+1+(-1)+(-1)=0,②当a 、b 、c 为一正两负时,设a 为正,b 、c 为负原式1+(-1)+(-1)+1=0, 综上,a b c abc a b c abc+++的值为0, 故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键. 11.A解析:A【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.12.C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.二、填空题13.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.14.(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h .故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】 本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.15.2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.16.4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 17.-7【分析】根据在数轴上点A 所表示的数为3可以得到到点A 的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A 所表示的数是-3到点A 的距离等于4个单位长度的点所表示的数 解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.18.【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.19.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.20.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n ,n 为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,三、解答题21.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6; (2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.23.(1)①7;②206;(2)6a =或6a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得6a =或6a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 24.﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则. 25.(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.26.15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。
期中测试卷(一)总分120分一.选择题(共9小题,每题3分)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C (﹣1)n D.1﹣22.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和43.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣84.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.26.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣ C ﹣2 D.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.19.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0D.﹣1二.填空题(共6小题,每题3分)10.﹣(﹣)的相反数与﹣的倒数的积为_________.11.若a与b互为倒数,则3﹣5ab=_________.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为_________.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为_________.14.32×3.14+3×(﹣9.42)=_________.15.(为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为_________分.三.解答题(共12小题)16.计算:(6分)2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.17.(6分)计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)18.(6分)计算:.19.先化简,再求值:(6分)(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.20.(6分)已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.21.(6分)已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.22(6分).若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.23.(6分)在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?24.(6分)如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成_________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.25.(7分)观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.26.(7分)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).27.(7分)在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为_________.(2)请你利用下图,再设计一个能求的值的几何图形.新华师版七年级上期中测试卷(一)参考答案与试题解析一.选择题(共9小题)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)n D.1﹣2考点:正数和负数;有理数的乘方;负整数指数幂.专题:常规题型.分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.解答:解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、(﹣1)﹣1=﹣1,为负数,故本选项正确;C、当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1,故本选项错误;D、1﹣2=1,为正数,故本选项错误.故选B.点评:本题考查了正数与负数的知识,属于基础题,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和4考点:数轴.专题:探究型.分析:根据两点间距离的定义进行解答即可.解答:解:A、﹣1和1之间的距离为:|﹣1﹣1|=2,故本选项错误;B、﹣1和2之间的距离为:|﹣1﹣2|=3,故本选项正确;C、﹣1和3之间的距离为:|﹣1﹣3|=4,故本选项错误;D、﹣1和4之间的距离为:|﹣1﹣4|=5,故本选项错误.故选B.点评:本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣8考点:数轴.专题:计算题.分析:根据数轴上的点与实数的对应关系利用数形结合的思想,用较大的数减去较小的数即可求解.解答:解:∵7>﹣1,∴在数轴上表示实数﹣1和7这两点间的距离为=7﹣(﹣1)=8.故选B.点评:本题考查的知识点为:求数轴上两点间的距离就让两点中对应的较大的数减去较小的数.4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|考点:数轴;绝对值.分析:本题通过观察数轴,判断出A点表示的数的正负性,再根据距离等于坐标的绝对值,化简,即可得出答案.解答:解:依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.点评:本题考查了数轴的性质及绝对值的定义,能够根据数轴判断出数的符号,再进一步确定距离.5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.2考点:绝对值;相反数.分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解答:解:∵|﹣2|=2,∴2的相反数是﹣2.故选A.点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.6.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.专题:数形结合.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=﹣、C=﹣2、D=,E=1标于数轴之上,可得:∵C点位于数轴最左侧,是最小的数故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃考点:有理数的加法.专题:计算题.分析:原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.解答:解:﹣5+4=﹣1故选C.点评:本题主要考查从实际问题抽象出有理数的加法运算.8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.1考点:有理数的减法;绝对值.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故选A.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.9.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1考点:有理数的加减混合运算.专题:规律型.分析:由题意,这从1到2010一共可分为1005组,每组的结果都是1,由此不难得出答案.解答:解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.点评:此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共6小题)10.﹣(﹣)的相反数与﹣的倒数的积为.考点:有理数的乘法;相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据有理数的乘法,可得答案.解答:解:﹣(﹣)的相反数是﹣,﹣的倒数是﹣,﹣(﹣)的相反数与﹣的倒数的积是﹣×(﹣)=,故答案为:.点评:本题考查了有理数的乘法,同号得正,异号得负,并把绝对值相乘.11.若a与b互为倒数,则3﹣5ab=﹣2.考点:倒数.专题:计算题.分析:根据互为倒数的两个数的积为1,直接求出ab的值,从而得到3﹣5ab的值.解答:解:∵ab=1,∴3﹣5ab=3﹣5×1=﹣2.故答案为﹣2.点评:本题考查了利用倒数求代数式的值,明确互为倒数的两个数的积为1是解题的关键.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为1.考点:非负数的性质:偶次方;非负数的性质:绝对值;有理数的乘方.专题:计算题.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵|m+3|+(n﹣2)2=0,∴m=﹣3,y=2;∴原式=(﹣3+2)2010=1故答案为1.点评:本题考查了非负数的性质以及有理数的乘方,几个非负数的何为0,这几个数都为0.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.32×3.14+3×(﹣9.42)=0.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)即可求解.解答:解:原式=3×9.42+3×(﹣9.42)=3×=3×0=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.15.为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为分.考点:近似数和有效数字.分析:应根据得9.4分得到7位裁判的准确打分和,除以7,再保留2位小数即可.解答:解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值X围是:(大于等于9.35和小于9.45之间)∴9个裁判去掉最高和最低得分后,实际取值就是7个人的分数.∴该运动员的有效总得分在大于或等于9.35×7=65.45分和小于9.45×7=66.15之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在65.45和66.15之间只有66是整数,∴该运动员的有效总得分是66分.∴得分为:66÷7≈9.4286,精确到两位小数就是9.43.点评:本题考查了近似数和有效数字,得到得分为一位小数的准确分值的X围,及得到7位裁判的准确打分和是难点.三.解答题(共12小题)16.计算:2009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.考点:有理数的混合运算.专题:计算题.分析:(1)原式变形后,利用积的乘方逆运算法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣(0.125×8)2009×8=﹣8;(2)原式=﹣32﹣5××(﹣18)÷9=﹣32+=﹣30.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)考点:有理数的混合运算.分析:先算减法,再算乘法,分子与分母错位约分得出答案即可.解答:解:原式=××××…××=.点评:此题考查有理数的混合运算,掌握运算顺序与计算的方法是解决问题的关键.18.计算:.考点:有理数的混合运算.分析:利用乘法分配律计算即可.解答:解:原式=10×(﹣18)﹣×(﹣18)=﹣180+=﹣179.点评:此题考查有理数的混合运算,掌握运算方法和运算定律,正确判定运算符号计算即可.19.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:整式的加减—化简求值.分析:(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.20.已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.考点:整式的加减—化简求值.分析:首先利用整式的混合运算法则整理进而将已知代入求出即可.解答:解:∵a﹣b=6,ab=﹣2,∴3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)=3ab+3a﹣6b﹣5b+10a+2ab﹣2a=5ab+11a﹣11b=5ab+11(a﹣b)=﹣10+11×6=56.点评:此题主要考查了整式的加减运算,正确把握运算法则是解题关键.21.已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值.分析:由|a+1|与|2a+b|互为相反数,可得|a+1|+|2a+b|=0,因为|a+1|≥0,|2a+b|≥0,所以a+1=0,2a+b=0,进而求出a=﹣1,b=2,然后计算a﹣b=﹣3,a+b=1,然后代入即可.解答解:∵|a+1|与|2a+b|互为相反数,∴|a+1|+|2a+b|=0,∵|a+1|≥0,|2a+b|≥0,∴a+1=0,2a+b=0,∴a=﹣1,b=2,∴a﹣b=﹣3,a+b=1,∴3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)=3(a﹣b)﹣4(a﹣b)2﹣7(a+b)2=3×(﹣3)﹣4×(﹣3)2﹣7×12=﹣9﹣4×9﹣7=﹣9﹣36﹣7=﹣52.点评:此题考查了整式的加减化简求值,解题的关键是求出a、b的值.22.若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.考点:整式的加减—化简求值;多项式.专题:计算题.分析:由题意求出m与n的值,原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:∵多项式2x n﹣1﹣x n+3x m+1是六次二项式,∴n﹣1=m+1,n=6,解得:m=4,n=6,原式=2m﹣2n2﹣3n+3m2﹣2m+n+8m﹣4n=3m2﹣2n2+8m﹣6n,当m=4,n=6时,原式=48﹣72+32﹣36=﹣28.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?考点:正数和负数.分析:(1)根据有理数的加法运算,可得答案;(2)根据有理数的加法,可得每次距离,根据有理数比较大小,可得答案;(3)根据有理数的加法,可的路程,根据路程与时间的关系,可得答案.解答:解:(1)﹣0.7+2.7+(﹣1.3)+0.3+(﹣1.4)+2.6=2.2(km),答:工作组最后到达的地方在出发点的北方,距出发点;(2)第一次的距离是|﹣0.7|=0.7(km),第二次的距离是|﹣0.7+2.7|=2(km),第三次的距离是|2+(﹣1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(﹣1.4)|=0.4,第六次的距离是|﹣0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4,答:在一天的工作中,最远处离出发点有;(3)(|﹣0.7|+2.7+|﹣1.3|+0.3+|﹣1.4|+2.6)÷2=4(h),9+4+6=19(点),即下午7点,答:工作组早上九点出发,做完工作时是下午7点.点评:本题考查了正数和负数,利用了有理数的加法运算.24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成16个细胞;(2)这样的一个细胞经过3小时后可分裂成64个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.考点:有理数的乘方.专题:规律型.分析:根据图形可知其规律为n小时是22n.解答:解:(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.点评:主要考查从图示或数据中寻找规律的能力.25.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.26.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).考点:列代数式;代数式求值.分析:(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.解答:解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.27.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.考点:规律型:图形的变化类.分析:此题要结合图形分析计算其面积和的方法是总面积减去剩下的面积.解答:解:(1)设总面积为:1,最后余下的面积为:,故几何图形的值为:.故答案为:.(2)如图等.点评:(1)此题结合图形观察发现,计算面积和的时候,运用总面积减去剩下的面积非常简便.(2)只要是按照图形的对称轴进行折叠均可.word 21 / 21。
佛坪中学2010~2011学年度第一学期期中考试
七年级数学试卷
出题人:蒋兴安 审核人:
班级:________ 姓名 :
一 、细心填一填(每题3分,共30分)
1、如果用+4米表示高出海平面4米,那么低于海平面5米可记作__ __ .
2、近似数43.010⨯精确到 ,有效数字有 个.
3、在数轴上与4所对应的点的距离为5的点所对应的数是___________ .
4、-(-3)-(+2) + (-11)-(-9)写成省略加号的和的形式 .
5、用代数式表示:一个两位数,十位数字是a,个位数字是b,把个位数字与十位数字对调一下,所得的两位数为 .
6、在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。
则月球表面昼夜的温差为____________ .
7、已知(b+3)2+∣a-2∣=0。
则b a 的值是__________ .
8、设a 是最大的负整数,b 的绝对值是最小的数,则b-a= .
9、当n 为正整数时,()()n n 21211-+-+的值是 .
10、单项式33m x y -与单项式412
n x y 是同类项,则m+n= . 二、认真选一选(每小题3分,共30分)
11、下列说法正确的是( )
A 、零是最小的整数
B 、有理数中存在最大的数
C 、整数包括正整数和负整数
D 、0是最小的非负数
12、若a+b<0,ab>0,那么这两个数( )
A 、都是正数
B 、都是负数
C 、一正一负
D 、符号不能确定
13、下列说法错误..
的是 ( ) A 、若a 、b 互为相反数,则a +b=0 B 、若a<0,b<0,则b a +=-(a+b)
C 、若a<0,b>0,则ab=-ab
D 、若a 为有理数,则|a|>a
14、下列代数式中,值一定是正数的是( )
A 、x 2
B 、|-x+1|
C 、(-x)2+2
D 、-x 2+1
15、下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有( )
A 、1个
B 、2个
C 、 3个
D 、4个 16、在代数式221,,0,5,,,33ab abc x y x π
---中,单项式有( ) A 、3个 B 、4个 C 、5个 D 、6个
17、有理数a,b 在数轴上的位置如图所示,
化简|a -b|的结果是( ) A 、a -b B 、a+b C 、–a+b
18、下列说法正确的是( )
A 、单项式是整式,整式也是单项式;
B 、25与x 5是同类项
C 、单项式312x y π的系数是12π,次数是4;
D 、12x
+是一次二项式 19、“学宫”楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多4个座位,则第n 排座位数是( )
A 、m+4
B 、m+4n
C 、n+4(m-1)
D 、m+4(n-1)
20、用●表示实圆,用○表示空心圆,现有若干个实圆与空心圆按一定规律排列下:
●○●●○●●●○●○●●○●●●○●○●●○●●●○……
问:前2001圆中,有________个空心圆。
A .667 B.668 C.669 D.700
三、静心算一算(每题6分,共30分)
21、)11(6
51)5.0(-⨯÷- 22、73454113146711914214---++
23、)60()1514121132(
-⨯-- 24、])3(2[3
1)5.01(123--⨯⨯---
25、4(123)(5)1251274755⨯-+-⨯-⨯-⨯
四、认真想一想(每题6分,共24分)
26、有6箱苹果,以每箱15千克为标准,超过的千克数记作正数,不足的千克数记作负数,每箱苹果质量如下:+2,-2,-2.5,-0.5,+4,+1,求这6箱苹果的总质量。
27、王老师在课堂上出了下面一道题:求当x =2. 7,y =-2. 8时,式子1552423432222322232+-+--++++-y x y x x y x y x x y x y x x 的值。
当很多同学用计算器计算时,小龙却很快就举手,已求出了这个式子的值,你知道小龙求出的值是多少吗?你能说出来小龙的计算方法吗?
28、若a,b 互为相反数,c,d 互为倒数,∣m ∣=2,求m
b a 4++m 2-3cd 的值.
29、小李的住房结构如图所示,小李打算把卧室和客厅.....
铺上木地板,请你帮他算一算,他至少需要买多少平方米的木地板?
五、决心博一博(6分)
30、将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
… …
(1) 十字框中的五个数的和与中间的数16有什么关系?
(2)设中间的数为x ,用代数式表示十字框中的五个数的和。
(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。