例谈两动点间距离的最值问题的几种解题途径
- 格式:doc
- 大小:305.00 KB
- 文档页数:5
中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析近几年共同点: ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
小类知识归纳:一、问题原型:如图1-1,要在燃气管道上修建一个泵站,分别向、两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?这个“确定最短路线”问题,是一个利用轴对称解决极值的经典问题。
解这类问题 二、基本解法:对称共线法。
利用轴对称变换,将线路中各线段映射到同一直线上(线路长度不变),确定动点位置,计算线路最短长度。
三、一般结论:(在线段上时取等号)(如图1-2)线段和最小,常见有三种类型:(一)“|定动|+|定动|”型:两定点到一动点的距离和最小通过轴对称,将动点所在直线同侧的两个定点中的其中一个,映射到直线的另一侧,当动点在这个定点的对称点及另一定点的线段上时,由“两点之间线段最短”可知线段和的最小值,最小值为定点线段的长。
1.两个定点+一个动点。
如图1-3,作一定点关于动点所在直线的对称点,线段(是另一定点)与的交点即为距离和最小时动点位置,最小距离和。
①特殊四边形为背景; ②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;例1(2006年河南省中考题)如图2,正方形的边长为,是的中点,是对角线上一动点,则的最小值是。
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。
A动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。
一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。
方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。
1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是〔〕 A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.〔2015•XX 〕如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是②③.〔把你认为正确的说法的序号都填上〕提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为ABC4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转. 〔1〕求证:AD=PB〔2〕若∠CPB=135°,求BD;〔3〕∠PBC=时,BD∠PBC=时,BD有最小值,并画图说明.分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由〔1〕知∠PBC=∠CAD=180°-45°=135°BD≥AB-AD,当BD=AB-AD时BD最小,此时,AB与AD在一条直线上,且AD在线段AB上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,,F为BE中点.〔1〕求CF的长〔2〕将△ADE绕A旋转一周,求点F运动的路径长;〔3〕△ADE绕点A旋转一周,求线段CF的X围.A BAACCAGDAGDA提示:本题根据中点构造三角形相似,△BOF∽△BAE,且12OF AE==7、如图,AB=4,O为AB中点,⊙O的半径为1,点P是⊙O上一动点,以点P为直角顶点的等腰△PBC〔点P,B,C按逆时针方向排列〕则线段AC的取值X提示:发现定等腰直角△AOC与等腰直角△OBE,从而得到相似。
动点最值问题的常用解法动点最值问题是数学中一个很有趣的问题,它往往涉及到最大值或最小值的求解,难度并不小。
针对这种问题,数学家们提出了各种不同的解法,本文将介绍其中一些常用的方法。
一、拉格朗日乘数法拉格朗日乘数法是一种利用约束条件求函数的最值的方法。
其基本思路是利用不等式的等式条件,将约束条件和目标函数融合,建立拉格朗日函数,最后对其求导,解出最优解。
这种方法的优点是精度高,适用条件广。
但是,由于需要解方程组,所以计算量比较大。
举个例子,要求函数 $f(x,y)$ 在方程 $g(x,y) = 0$ 的限制下的最大值,我们可以建立拉格朗日函数:$$L(x,y,\lambda) = f(x,y)+\lambda g(x,y)$$其中 $\lambda$ 为拉格朗日乘数。
对拉格朗日函数分别对$x,y,\lambda$求偏导数,并使它们等于0,得到以下方程组:$$\begin{cases}\nabla f(x,y) + \lambda \nabla g(x,y) = 0\\g(x,y) = 0\end{cases}$$解出这个方程组,就可以得到函数 $f(x,y)$ 在 $g(x,y)=0$ 限制下的最优解了。
二、图像解法图像解法是一种简单直观的方法,适合于几何意义比较明显的问题。
它的基本思路是将问题转化为图像,然后利用图像来求解最值问题。
例如,要求函数 $f(x,y)$ 在直线 $y=kx$ 上的最大值,我们可以将其转化为函数 $g(x) = f(x,kx)$ 的最大值问题。
接下来,我们可以利用图像解法,通过观察函数$g(x)$ 在 $[a,b]$ 区间的图像,来确定它的最大值点。
显然,最大值点的横坐标为$x_0$,纵坐标为 $f(x_0,kx_0)$,即可得到函数 $f(x,y)$ 在 $y=kx$ 上的最大值。
三、证明解法证明解法也是一种常用的方法,它的基本思路是通过分析问题的性质,得到问题的最值解,并给出相应的证明过程。
“两点一线”求“最值”在初中数学学习中,我们时常会遇到求距离的“最”值,此类问题会用许多实际问题作为包装,但其本质上还是一个求极值的问题。
它们看起来很复杂,其实只需一个数学上最基本的原理――“两点之间,线段最短”。
当然,为了利用这一原理来解决问题,我们还时常需要创造一定的条件,才能使问题得以解决,下面我们就讲解一下常见的两种类型最值的求法。
一、距离之“和最小”问题原型:如图1,点A、B在直线l的两侧,试在直线l上求作一点P,使PA+PB最小?解决思路:连接AB交直线l于点P,则点P即为所求。
我们可以做如下证明:如图2,在直线l上任取异于点P一点P',连接P'A、P'B,可知P'A+P'B>AB,(两点之间线段最短)所以P'A+P'B>PA+PB,所以点P即为所求做的使PA+PB最短的点。
问题变形一:如图3,点A、B在直线l的同侧,试在直线l上求作一点P,使PA+PB最小?解决思路:相比较图2,本题中两点A、B分别位于直线l的同侧,欲参照图2作法求作距离和最小的点,需使两点位于直线的两侧,且不能影响到两点中与直线上任一点的距离,这一要求可由我们学过的轴对称来实现,所以我们可用如下办法来寻找点P的位置:作点B 关于直线l的对称点B',连接AB'交直线l于点P,则点P即为所求。
我们可作如下证明:如图4,在直线l上任取异于点P的一点P',连接P'A、P'B、P'B',因为点B,B'关于直线l对称,由对称的性质可知PB=PB',P'B=P'B',如图可知:P'A+P'B=P'A+P'B'>AB'=PA+PB'=PA+PB,所以P'A+P'B>PA+PB,故点P即为所求。
动态几何中的双动点最值问题的求解策略双动点问题将几何知识与数学知识融合一起,综合考查学生应用知识的能力.这类问题综合度高,立意深,对学生的能力要求高,往往形成学生学习中的难点,尤其是双动点问题中的最值问题,对学生思维要求更高.如何引导学生解决这类问题,成为中考复习的一个要点.本文以双动点中的线段最值问题、面积最值问题、情景最值问题为例,进行详解,以期找到解决这类问题的一般方法.一、双动点形成的线段最值问题例1 如图l,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和l,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.解析由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,如图2,连接BD,∵菱形ABCD中,∠A=60°,∴△ABD是等边三角形.∴BD=AB=AD=3.∵⊙A、⊙B的半径分别为2和1.∴PE=1,DF=2,∴PE+PF的最小值是3.点评本题需要综合应用菱形的性质,相切两圆的性质;等边三角形的判定和性质,才能使问题得以解决.在数学思维应用中要特别重视数形结合的思想,从中找到最值的条件是关键.二、双动点问题形成的面积最值问题例2如图3,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.解析如图4,过点O作OC垂直AB于C,交⊙O于D、E两点,连接OA、OB、DA、DB、EA、EB.∵∠AMB =45°,∴∠AOB =2∠AMB =90°, ∴△OAB 是等腰直角三角形,∴ OA 而S 四边形MANB =S △MAB +S △NAB ,∵当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB的距离最大,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E点时,四边形MANB 面积最大.∴四边形MANB 面积最大值:S 四边形DAEB =S △DAB +S △EAB =12AB ·CD+12AB·CE=12AB·(CD+CE)=12AB·DE=12× 点评 本题将圆与三角形知识综合在一起,需要深刻理解垂径定理、圆周角定理、等腰三角形的判定与性质,通过两动点运动,找到组成四边形的两三角形面积最值情景,从而使问题得以解决.三、双动点问题中形成的情景最值问题例3 如图5,直线y =43x -+8与x 轴交于A 点,与y 轴交于B 点,动点P 从A 点出发,以每秒2个单位的速度沿AO 方向向点O 匀速运动,同时动点Q 从B 点出发,以每秒1个单位的速度沿BA 方向向点A 匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ ,设运动时间为t (s)(0<t ≤3).(1)写出A ,B 两点的坐标;(2)设△AQP 的面积为S ,试求出S 与t 之间的函数关系式;并求出当t 为何值时,△AQP 的面积最大;(3)当t 为何值时;以点A ,P ,Q 为顶点的三角形与△ABO 相似?并直接写出此时点Q 的坐标.解析 (1)令y =0,则43x -+8=0,解得x =6;令x =0,则y =8.所以OA =6,OB =8,所以点A (6,0),B (0,8)(2)在Rt △AOB 中,由勾股定理得,AB .因为点P 的速度是每秒2个单位,点Q 的速度是每秒1个单位所以AP =2t ,AQ =AB-BQ =10-t .所以点Q 到AP 的距离为AQ·sin∠AOB=(10-t)×810=45(10-t).所以△AQP的面积S=122t·45(10-t)=45-t2+5t(0<t≤3).又因为S=45-(t-5)2+20,45-<0,0<t≤3,所以当t=3时,△AQP的面积S最大=845.(3) t=3013秒时,点Q的坐标是(1813,8013).。
动点问题求最小值的做法思路
1、化动为静:将动点问题转化为静态的几何问题,简化问题,使解题过程更加直观和易于操作。
这种方法适用于多种动点问题,包括但不限于求最值问题。
2、构造比例线段:在某些特定的动点问题中,通过构造比例线段来求解是最直接有效的方法。
这种方法在解决阿氏圆最值模型等题目时尤为常见。
3、利用轴对称性质:初中数学中,利用轴对称的性质可以实现“搬点移线”,从而求解几何图形中的最值问题。
这种方法依赖于基本定理,如两点之间线段最短、三角形任意两边之和大于第三边等。
4、寻找线段的“替身”或“等比替身”:在解决双动点线段问题时,找到一个与原线段长度相等或成比例的线段作为替代,是解题的关键。
这种方法有助于简化问题,找到解决问题的突破口。
5、分类讨论:当动点问题存在多种可能性时,需要进行分类讨论,以确保不遗漏任何可能的情况。
这种方法适用于那些情况复杂、可能存在多种解法的问题。
6、建立直角三角形模型:在某些情况下,通过建立直角三角形模型并利用其性质(如勾股定理)来求解是最有效的策略之一。
这种方法特别适用于涉及圆和直线的问题。
7、动态规划:虽然动态规划主要用于解决算法问题,但其思想也可以应用于某些特定的动点最值问题中。
通过定义状态、计算转移方程和确定终止条件,可以有效地求解这类问题。
动点线段求最大值的方法
在数学领域中,求解动点线段的最大值问题是一种常见的几何问题。
这类问题通常出现在优化问题的求解过程中,如求解函数的最大值、几何图形的面积或体积的最大值等。
本文将详细介绍求解动点线段最大值的方法。
一、问题定义
动点线段最大值问题可以描述为:在一条线段上,有一个动点P,该动点可以在线段上任意移动。
要求求解动点P到线段两端点A和B的最大距离。
二、求解方法
1.代数方法
(1)设线段AB的长度为L,动点P到端点A的距离为x(0≤x≤L),则动点P到端点B的距离为L-x。
(2)根据勾股定理,可以得到动点P到线段两端点的距离的平方和为:d^2 = x^2 + (L-x)^2
(3)对d^2求导,得到:
d"^2 = 2x - 2L + 2(L-x)
(4)令d"^2 = 0,解得x = L/2,此时动点P位于线段的中点,距离两端点的距离相等,为最大值。
2.几何方法
(1)作线段AB的垂直平分线CD,设垂直平分线与线段AB的交点为O。
(2)根据几何知识,线段AB的中点O到两端点A和B的距离相等,且
为线段AB上任意一点到两端点距离的最大值。
(3)因此,动点P在线段AB的垂直平分线CD上移动时,距离两端点的距离最大,最大值为线段AB长度的一半。
三、总结
求解动点线段最大值的方法主要有代数方法和几何方法。
在实际应用中,可以根据问题的具体情况选择合适的方法进行求解。
浅析动点到两个定点得距离之与(差)得最值一、直线上得动点到直线外两个定点得距离之与(差)得最值。
例1(1)已知点A(1,1),点B(3,—2),P就是x轴上任意一点,则PA+PB得最小值为,此时点P得坐标为;(2)已知点A(1,1),点B(3,2),P就是x轴上任意一点,则PB-PA得最大值为,此时点P得坐标为。
解析:(1)如图1,当点P在x轴上运动时,PA+PB?AB(当且仅当A,P,B三点共线时等号成立)∴(PA+PB)min =AB=此时,点P得坐标为(2)如图2,当点P在x轴上运动时,PB— PA =AB(当且仅当A,P,B三点共线时等号成立)∴(PB-PA)max =AB=此时,点P得坐标为变题:(1)已知点A(1,1),点B(3,2),P就是x轴上任意一点,则PA+PB得最小值为,此时点P得坐标为;解析:(1)如图3,作点B关于x轴得对称点Bˊ(3,—2),则有PB=PBˊ当点P在x轴上运动时,PA+PB=PA+PBˊ=ABˊ(当且仅当A,P,Bˊ三点共线时等号成立)∴(PA+PB)min =AB?= 此时,点P得坐标为(2)已知点A(1,1),点B(3,-2),P就是x轴上任意一点,则PB—PA得最大值为,此时点P得坐标为.解析:(2)如图4,作点B关于x轴得对称点Bˊ,则有PB=PBˊ当点P在x轴上运动时,PB— PA= PBˊ-PA ﹦ABˊ(当且仅当A,P,Bˊ三点共线时等号成立)∴(PB—PA)max =ABˊ=此时,点P得坐标为归纳:①当两定点位于直线得异侧时可求得动点到两定点得距离之与得最小值;②当两定点位于直线得同侧时可求得动点到两定点得距离之与得绝对值得最大值.若不满足①②时,可利用对称性将两定点变换到直线得同(异)侧,再进行求解。
如变题得方法.例2函数得值域为.解析:将函数进行化简得:即为动点P(x,0)到两定点A(1,1)、B(3,—2)得距离之与.由例1可知:该值域为二、圆锥曲线上得动点到两个定点得距离之与(差)得最值.(一)直接求解或利用椭圆(或双曲线)得定义进行适当转化后求解。
例谈两动点间距离的最值问题的几种解题途径(中学教研2017/3)
杨伟达
(广州市花都区第二中学 510800)
众所周知,距离问题本是一个古老的话题.但在每一年的高考中,它常常成为专家命题的第一视觉,也常常是许多学生解题的绊脚石.因此,在解题中若能处理好距离的最值问题,对快速解题起到事半功倍的效果.下面是笔者对两动点间距离的最值问题从不同角度进行析疑解惑,突显“动”的魅力,焕发出新的活力.
一、借助特殊曲线,寻求等价替换
有这样的一类题,它们的两动点分别在常见的特殊曲线上,且这特殊曲线具有特殊的性质.此时可以通过观察图形,利用图形的特殊性质即可求得最值.
例1 已知圆C :03422
2
=+-++y x y x
(1)略;(2)从圆C 外一点),(y x P 向圆引一条切线,M 为切点,O 为坐标原点,且有PO PM =,求使PM 最小的P 点的坐标.
分析:此题的一个动点在圆外,另一个在圆上,且这两个动点的连线是圆的切线(特殊).解决此题关键在于利用圆的特殊性质,找出切线长等价替换,问题即可解决.
解:已知圆C 方程:03422
2
=+-++y x y x
所以圆心坐标为)2,1(-,半径为2,又因为PO PM =,设),(11y x P , 且PM 是圆C 的切线,所以)(2
2
2
为圆的半径R PC R PM =+ 所以2
1212
12
12)2()1(y x y x +=
--++
化简为:034211=+-y x 这是点P 满足的轨迹方程. 因为PO PM =,所以PM 的最小值就是PO 的最小值.
PO 的最小值转化为点O 到直线034211=+-y x 的距离.即10
5
320
3min =
=
PO
联立方程组有⎪⎩⎪⎨⎧=+-=+034220911212
1y x y x ,解得:⎪⎩
⎪⎨⎧
=-=53
1031
1y x 因此,点P 的坐标为)53
,103(-.
例2 分别在椭圆19
42
2=+y x 与抛物线222m y x -=上的两动点M 、N 间的距离最小值是5,则m 的值是( )
(A )1± (B )2± (C )2±
(D )2
2
±
分析:如图1,通过草图,不难发现两曲线相离,且位置比较特殊.观察可知,曲线上两动点的最短距离转化为两顶点(定点)间的距离.此时问题就变得简单了.
解:因为M 、N 间的距离最小值是5 所以椭圆与抛物线不相交
如图1,观察,此时抛物线的顶点N 与椭圆上顶点M 的距离 就是两动点M 、N 间的距离最小值
抛物线的顶点)2,0(2
m 与椭圆上顶点)3,0(的距离最小值为5 所以5322
=-m 解得:2±=m 故选B.
二、借助三角函数,寻求合二为一
有这样的一类题,它们的两动点分别在常见的特殊曲线上,且动点也可以用含参坐标表示.此时可以直接运用距离公式,把它转化为三角函数的形式即可求得最值.比如:圆
2
2
2
R y x =+上一动点可表示为))(sin ,cos (为参数θθθR R ;椭圆122
22=+b
y a x 上一动点
可表示为))(sin ,cos (为参数θθθb a .
例3 (2016·广州二测理数23)选修4-4坐标系与参数方程 在直角坐标系xOy 中,曲线C
的参数方程为,(sin x y θθθ
⎧=⎪
⎨
=⎪⎩为参数).以点O 为极
点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin(ρθ+
)4
π
=(1) 略;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最大值.
分析:此类型题每年在全国卷选做题中常常出现.比较快捷的解决方法是利用参数方程
表示曲线上的某一动点坐标,再根据条件转化为求三角函数的最值问题即可将问题解决.
解:(1)略.所求曲线C 的直角坐标方程为2
213
x y +=;直线l 的直角坐标方程为2x y +=.
(2)因为点Q 是曲线C 上的点,所以可设点Q
的坐标为
)
,sin θθ
所以点Q 到直线l
的距离为d
=
=
. 当cos 16πθ⎛
⎫
-
=- ⎪⎝
⎭
时,max d ==所以点Q 到直线l
的距离的最大值为三、借助数形结合,突显形象直观
有这样的一类题,它们的一个动点在某区域内,另一个动点在某特殊曲线上.此时两动点间距离问题可转化为某一定点到区域内的距离最值即可将问题解决.
例4 设D 为不等式组⎪⎩
⎪⎨⎧
≤-+≤-≥03200y x y x x 表示的平面区域,圆C:1)5(2
2=+-y x 上的点
与区域D 上的点之间的距离的取值范围是 A.⎪
⎪⎭
⎫⎢
⎣⎡+-134,12
25 B.[)
134,
117+- C.[)34,17 D.[)
134,117--
分析:此题涉及线性规划问题.先将不等式组表示出平面区域,再根据圆的特殊性质通过数形结合可将问题解决.
解:如图2,不等式组⎪⎩
⎪
⎨⎧≤-+≤-≥03200y x y x x 表示的平面区域如下图中三角形ABO 内(含边缘)
的阴影部分。
其中三角形ABO 的顶点坐标分别为A (0,3),O (0,0),B (1,1) 圆C:1)5(2
2
=+-y x 表示圆心坐标(5,0),半径为1
所以求两个动点的距离转化为定点到动点的距离 即先求圆心C 到三角形ABO 的阴影部分内任一动点的距离经观察可知,BC 距离为最小;AC 距离为最大
所以17)10()15(2
2=-+-=
BC
34)30()05(22=-+-=AC
所以两动点的最小距离为117-,最大距离为134+ 故选B.
四、借助二次函数,寻求配方到位
有这样的一类题,它们的两动点分别在常见的特殊曲线上,且这些动点均可以用含参坐标表示.此时可以直接运用距离公式,把它转化为一元二次函数即可求得最值.例如人教版选修2-1第113页习题B 组第二题.
例5 (人教版必修2第139页B 组第3题)如图3,以正方体的三条棱所在直线为坐标轴,建立空间直角坐标系Oxyz ,点P 在正方体的对角线AB 上,点Q 在正方体的棱CD 上. (1)当点P 在对角线AB 上运动,点Q 在棱CD 上运动,探究PQ 的最小值.
分析:这是一道课本习题.两动点分别在两条异面直线上,关键是把动点用坐标表示出来,再转化为一元二次函数求最值.
解:设正方体边长为a ,因为点P 在对角线AB 上运动, 所以设),,(λλλ-a P )0(a ≤≤λ
又因为点Q 在棱CD 上运动, 所以设),,0(μa Q )0(a ≤≤
μ
所以2
2
2
2
)()()0(λμλλ+-+-+-=a a PQ
2222
2
1)()2(2a a a PQ +--+-=μλλ
因为0)(,0)2
(22
2≥--≥-μλλa a
所以22222
2
121)()2(2a a a a PQ ≥+--+-
=μλλ 当且仅当02
=--=-
μλλa a
时,等号成立 此时a 21
=
=μλ,即当且仅当P 、Q 分别为AB 、CD 的中点时 所以2
min
22
1a PQ
=
,a PQ 22min =. 五、借助导数工具,寻求转换条件
有这样的一类题,它们的一动点在函数图象上,另一动点在另一个函数(分段函数)图象上.若运用动点坐标距离公式,方法简单,但运算复杂,只能可望而不可及;此时若能借助导数这一工具,利用切线间的距离即可求得最值.
例6 已知实数1>a ,设函数18)(2
++=
x x a x f ,⎩⎨⎧≤->=)
0(,2
)0(,log )(x x x x g a ,
设P 、Q 分别为)(x f 、)(x g 图象上的任意点,若线段PQ 长度的最小值为2,则实数a 的值为( )
A .2
B .2
C .e
D .2或e
分析:此题涉及两函数图象上的两动点问题.关键在于分别求出两曲线上的切线的最值问题,此时两切线为互相平行.值得注意的是要进行检验,防止“多一个”或“漏一个”. 解:当0≤x 时,P 在函数18
)(2
++=
x x a x f 图象上的最低点,点P 的坐标为)21,4(a a --,所以222
1min =+-=a
PQ
当2=a 时,如图3,y 轴左边,2=MN 为最小y 轴右边,观察图象
发现x y a log =与1-=x y 图象上有两个交点A ,再结合以C (0,1),可知2=AC
观察还存在有比2=AC 小的动点
经检验,2=a 不符合 当0>x 时,
当P 、Q 分别在)(x f 、)(x g 图象上的各自切线间的距离时,此时PQ 长度为最小 对于任意a ,)(x f 常过点(0,1),)(x g 常过(1,0) 不妨发现两点(0,1)与(1,0)间距离刚好为2
所以原问题转化为能否存在a ,使得分别过P (0,1),Q (1,0)处的切线平行,此时两切线的斜率相等
14)(+='x a x f 1104)0(=+⨯='=a
f k P xlina x
g 1)(=
' a
g k Q ln 1
)1(='= 所以Q P k k =即
1ln 1
=a
解得:e a = 图3。