特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例4 给定空间直角坐标系,在x轴上找一点P, 使它与点P0 (4,1,2)的距离为 30。
解 设点P的坐标是(x,0,0),由题意,P0P 30,
即 (x 4)2 12 22 30,
所以x 42 25.
(注意它与平面直角坐标系的区别)
空间两点间距离公式
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
思考题
在空间直角坐标系中,指出下列各 点在哪个卦限?
A(1,2,3), B(2,3,4),
C(2,3,4), D(2,3,1) .
思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;
M2M3 M3M1 , 原结论成立.
补充 例 2 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点P2 (0,1,1)的距离的两倍,求点P 的坐标. 解 因为 P 在 x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
z (3)关于原点对称的点
M M’(-1,2,-3)
3
o
1
y
2
x
M’
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3), 求它分别关于坐标平面、坐标轴和原点的对称 点的坐标。
z
用前面的方法
M
把M点关于其
它坐标平面和 3
坐标轴对称的 点的坐标求出 来。
o
1 2
y
x
五、小结
空间直角坐标系(轴、面、卦限)
解得x 9或x 1.
所以点P的坐标为(9,0,0)或(-1,0,0)。