电伴热带基本知识
- 格式:ppt
- 大小:2.37 MB
- 文档页数:22
电伴热带简介一、作用:电伴热是用电热来补偿被伴热体(容器、管道等)在工艺过程中的热量损失,以维持介质工艺温度。
二、分类:自限式电伴热带:电热功率随系统温度的变化自调,随时补偿温度变化,避免伴热带过热烧毁。
恒功率电伴热带:通电后功率输出是恒定的,不会随外界环境、保温材料、伴热的材质变化而变化,而其功率的输出或停止通常是由温度传感器来控制。
三、结构:自限温电伴热带组成:平行导电金属线芯、发热芯带(PTC材料)、绝缘层、屏蔽层、防护套。
四、原理:当温度升高时,导电塑料产生微分子的膨胀,碳粒渐渐分开,引起电路终端电阻上升,伴热带会自动减少功率输出。
当温度变低时,导电塑料又恢复到微分子收缩状态,碳粒相应连接起来,形成电路,伴热带发热功率又自动上升。
五、按结构分类自限温伴热带可分为:基本型:由芯带和绝缘构成的自限温伴热带,用“J”表示。
加强型:在基本型外,再包覆一层外护套,用“B”表示。
防爆型:在基本型外,将金属丝编织形成屏蔽层,具有接地和增强保护的作用,再包覆一层外护套,用“P”表示。
耐腐型:在基本型自限温伴热带外包裹一层具有耐酸、碱特性的外护套,用“F”表示。
六、按温度分类:自限温电伴热带各系列参数七、具体型号规格:例:D BRZ-25-200-J低温型,伴热带窄型,标称功率25W/m ,额定电压220 V ,基本型。
八、阻值:芯带发热可认为是并联电路,芯带发热阻值变化,功率也变化;芯带在稳定时必须有一个定型阻值作为电压选择依据。
九、绝缘:绝缘表面应光滑平整、色泽均匀;应紧密挤包在芯带上。
十、防护套:护套应单层挤包,表面平整、色泽均匀,且容易剥离不损伤绝缘和编织层。
十二、 安装注意事项:1. 严禁蒸汽伴热和电伴热混用于一体;2. 及时处理被伴热物体锋利的边及毛刺;3. 绝缘层不得损坏,应紧贴被加热体以提高热效率,若被伴热体为非金属体,应用铝箔胶带增大接触传热面积,用紧固带固定,严禁用金属丝绑扎;4. 法兰处介质易泄露,缠绕电热带时应避开其正下方;5. 避免电伴热带两根母线直接接触,造成短路;6. 用防水密封胶和防水绝缘胶布处理电伴热接头与盲头;7. 屏蔽层必须接地,接地电阻不大于4Ω,绝缘阻值不低于20M Ω; 8. 电伴热带安装时的最小弯曲半径不得小于其厚度的5~6倍;9. 缠绕方法应尽可能使散热体必要时随时可拆除进行维修或更换而不损坏电热带或影响其它线路。
第四章伴热带电伴热带是为解决北方天气温度低,管道冻堵的问题而诞生的,目前大多数伴热带都带有自控温功能,一般情况下,伴热带的温度达到70度时,伴热带就会自动减少加热电流,使伴热带自动恒温。
一、工作原理:伴热带主要材料是半导电的高分子复合PTC,在其外面包裹一层绝缘材料作为护套。
当通电时,电流由一根线芯经过导电的PTC材料到另一根线芯形成回路,导电材料升温,电阻随之增加。
当温度升到一定程度,阻值大到几乎可以将电流阻断,伴热带便停止加热,向管道散热。
自限温伴热带每米功率大约25瓦(宽度不同功率也不同),随着温度升高,功率会随之降低,安装时可随意剪断,取其不同长度。
二、伴热带安装注意事项:(一)、伴热带安装时遵循四原则:1、长度足够:按照需要保温的管道,取足够的长度,中间不得接头。
2、线头错开:接头和盲头的两根线芯错开至少2cm ,不得平行。
3、注意防水:用防水胶布和防水密封胶按要求密封接头。
4、放在中间:将伴热带的接线端和盲端放在两层保温的中间。
(二)、伴热带五注意事项:1、电伴热带的功率要同主控制器的功率相匹配,尽量最长敷设不超过50m 。
2、电伴热带敷设时必须紧贴管道,以减少热量丢失。
3、防冻感温探头不得与伴热带直接接触,感温探头应和伴热带分别放在管道两侧,以免造成感温不准确。
4、施工过程中,伴热带表层不得划伤,破皮或有裂痕等。
一旦发现,立即更换。
5、不得过度弯曲或折弯伴热带,其最小弯曲半径应大于五倍带宽。
三、故障检修:故障迹象可能原因校正方法线路断路器跳闸1)断路器选型太小2)线路需电量超过断路器所能提供3)断路器在低于设计起动温度下起动4)断路器故障5)接线盒或其他配件有短路6)电热带收到机械损坏7)尾端处误将电热带两导线连接8)电热带首尾端绝缘层热收缩,导电体与管线或屏蔽层短路;123)重新计算核对电路所需电量,再选配合用的断路器(供电电缆亦应选配);4)对断路器进行检查;5、6)确定故障所在,进行重装或更换。
电伴热的基础知识讲解电伴热的基础知识⼀,前⾔我把有关电伴热的⼀些基础知识整理出来供刚刚涉⾜这个⾏业的朋友参考,也可以作为给⽤户的技术讲座参考资料使⽤。
(⼀)为什么要伴热在⼯业⽣产过程中为了保证⽣产的正常运⾏和节约能源,⼤多数的设备和管道都要采取隔热(保温)措施。
但是,在⼯艺介质的存储和传输过程中散热损失还是不可避免的。
散热就意味着设备和管道中介质温度的降低。
介质温度的降低将会带来好多的问题。
例如,设备和管道中⽔的温度的降低会造成冻结;⾷⽤油管道中⾷⽤油温度的降低会造成黏度增加,阻⼒增⼤,流动困难。
三聚氰氨如果温度降低将会析出结晶造成设备和管道的报废。
沥青如果温度降低将会凝固造成灌肠。
这些问题的产⽣都将使得⽣产⽆法正常运⾏。
为了保证⽣产的正常运⾏和节约能源,在⽣产、存储和运输的过程中就必须从设备和管道的外部或内部给介质补充热量。
这就是伴热的⽬的。
伴热和加热不同,伴热只是补充介质热量的损失,维持⼀定的温度,避免介质温度的降低带来的问题,⼀般维持温度都低于操作温度。
加热则要求给介质提供⼤量的热量,使得介质温度⾼于原来的温度(如管道介质的进⼝温度)。
因此加热⽐较伴热需要消耗更多的能量。
(⼆)传统的办法和缺点传统的办法是以蒸汽、热⽔或导热油为热媒,⽤内外伴管、夹套管或内外盘管的⽅式向设备和管道提供所需的热量。
导热油需要建造专门的系统,还要定期更换导热油,费⽤太⾼。
⼯⼚⼚区内,蒸汽来源⽅便,⽽且蒸汽潜热⼤,所以⼤多数选择蒸汽为热媒。
但是,蒸汽的供汽、疏⽔、凝液回收系统复杂,安装的⼯程量⼤。
蒸汽的温度很难控制难以满⾜不同介质对维持温度的不同需要。
蒸汽系统的热效率低,能耗⽐较⼤,能量利⽤不合理。
蒸汽系统的阀门和疏⽔器等容易泄露会造成能量的⼤量浪费同时还会影响环境。
蒸汽系统的设备和管道还容易腐蚀,维修的费⽤也很⾼。
另外蒸汽系统的运⾏成本也⽐较⾼。
(三)电伴热的产⽣和优势正是因为上述的原因,五、六⼗年代,国外着⼿研究⽤电能转换热能的新产品。
电伴热带简介一、作用:电伴热是用电热来补偿被伴热体(容器、管道等)在工艺过程中的热量损失,以维持介质工艺温度。
二、分类:自限式电伴热带:电热功率随系统温度的变化自调,随时补偿温度变化,避免伴热带过热烧毁。
恒功率电伴热带:通电后功率输出是恒定的,不会随外界环境、保温材料、伴热的材质变化而变化,而其功率的输出或停止通常是由温度传感器来控制。
三、结构:自限温电伴热带组成:平行导电金属线芯、发热芯带(PTC材料)、绝缘层、屏蔽层、防护套。
四、原理:当温度升高时,导电塑料产生微分子的膨胀,碳粒渐渐分开,引起电路终端电阻上升,伴热带会自动减少功率输出。
当温度变低时,导电塑料又恢复到微分子收缩状态,碳粒相应连接起来,形成电路,伴热带发热功率又自动上升。
五、按结构分类自限温伴热带可分为:基本型:由芯带和绝缘构成的自限温伴热带,用“J”表示。
加强型:在基本型外,再包覆一层外护套,用“ B”表示。
防爆型:在基本型外,将金属丝编织形成屏蔽层,具有接地和增强保护的作用,再包覆一层外护套, 用“ P”表示。
耐腐型:在基本型自限温伴热带外包裹一层具有耐酸、碱特性的外护套,用“ F”表示。
EA 也1廿体;2 (发昭电阻体)PTC芯带;3绘编展图I離本型结构示恿團1导他2 :发热电阻体J PTC芯臨3總嫌廉;址属编詼屏嚴层图2屛谶型结枸示意图六、按温度分类:呆列代号:低■MID)・中斛型煜几高制堆〔(;》九、绝缘: 绝缘表面应 光滑平整、色泽 均匀;应紧密挤 包在芯带上。
十、防护套:护套应单层挤包,表面平整、色泽均匀,且容易剥离不损伤绝缘和编织层。
井类:輩本型〔门加撞型[旳 耐脱塑〔F ) 防爆型(P ) 锁底褪用电•-标称帯宽:眸通別不标注.宽帘型〔即 产品比号:"件热"的徨语桥音網写例:D BRZ-25-200-J低温型,伴热 带窄型,标称功 率25W/m ,额定 电压220 V ,基 本型。
八、阻值:芯带发热可认为是并联电路,芯带 发热阻值变化,功率也变化;芯带在稳 定时必须有一个定型阻值作为电压选择 依据。
电伴热带如何工作?应用于哪些领域?电伴热带是目前最好的防冻保温产品,管道、罐体、阀门等等都需要它进行防冻伴热。
那么很多人要问了电伴热带如何工作?应用于哪些领域呢?电伴热带原理:电伴热带其实就是一种发热电缆在每根伴热带内,母线之间的电路数随着温度的影响而变化,当伴热电周围的温度变冷时,导电塑料产生收缩而使碳粒连接形成电路,电流经过这些电路,是伴热线发热。
当温度升高时,导电塑料产生的膨胀,碳粒渐渐断开,引起电路中断,电阻增加,版热线会自动减少功率输出。
当周围温度变冷时,塑料又恢复到收缩状态,碳粒相应连接起来形成电路,伴热带发热功率又自动上升。
电伴热带应用领域广泛,在石油、化工、电力、冶金、轻工、食品、冷冻、建筑、煤气、农副产品等等各个领域发挥着重要作用。
接下来小编来具体的介绍几个应用领域,电伴热带所发挥的作用。
应用领域一:石油管道冬季气温低,石油管道管道很容易出现冻结、凝固的现象,怎样防止这些问题呢,保证石油正常运转。
石油管道专用电伴热带受热均匀,使得石油管道内的介质粘度下降均匀,有效地解决了冬季石油管道抗凝的一大问题。
应用领域二:消防管道消防管道与我们生活密切相关。
电伴热带作为消防管道防冻有效措施,在消防管道和地下车库喷淋系统中发挥着极其重要作用。
通过电伴热系统补偿管道内热损失,保证消防管道在寒冷的冬季也能正常使用。
应用领域三:天沟融雪北方的冬天不仅气温低,降雪还很频繁。
屋面上的天沟积雪还没及时的融化,新的降雪又覆盖在上面。
久而久之对屋顶的抗压能力也是一种挑战。
为了避免对人的安全造成危害,北方的居民会在上面铺设一根电伴热带,通过电伴热带来屋顶进行及时的融雪化雪,安装方便,节能环保,使用寿命长。
应用领域四:土壤加热电伴热带除了在工业、民用领域使用,农业领域也备受认可。
冬季气温低,土壤被冻结,不利于植物的生长。
土壤防冻保温,采用电热系统无污染维护方便,保证植物的生长。
尤其像足球场草坪通常会用到电伴热带。
电伴热带电伴热带是由导电聚合物和两根平行金属导线及绝缘护层构成。
其特点是导电聚合物具有很高的正温度系数特性,且互相并联,能随被加热体系的温度变化自动调节输出功率,自动限制加热的温度,可以任意截短或在一定范围内接长使用,并允许多次交叉重叠而无高温热点及烧毁之虑。
中文名电伴热带进入应用1971年构成导电聚合物、金属导线、绝缘护层特点导电聚合物具有很高的正温度系数目录.1基本信息.2电缆结构.3结构分类.▪按温度进行分类.▪按输出功率分类.▪按应用场所分类.▪按电缆用途分类.▪按适用电压分类.4起火原因.▪电伴热带末端起火.▪电伴热带中部起火.5产品参数.6工作原理.7使用说明基本信息编辑自1971年进入应用以来,由于伴热功率随电伴热带上各处的温度变化,加热的半导体芯材表现为一个与加热温度高/低变化趋势相反的可变温度电阻。
自限式电伴热带已经成为当今世界上最通用的电伴热带类型。
它们可以广泛地应用于液态物体在管道中输送和罐体的防冻保温、维持工艺温度、加热公路、坡道、人行横道、屋檐及地板等。
电伴热带自限式电伴热带两根导电芯之间分布着起加热作用的半导体高分子材料,其外部由高分子内护套、合金屏蔽网和高分子外护套构成。
当有电流通过时,随着电伴热带温度升高,电缆电阻同时升高。
其结果是电伴热带的输出功率随着其温度的升高而降低。
由于伴热功率随电伴热带上各处的温度变化,加热的半导体芯材表现为一个与加热温度高/低变化趋势相反的可变温度电阻。
自限式电伴热带即使重叠也不会过热。
无需特别的设计,自限式电伴热带可以在现场任意剪切其工作长度以精确对应管道的实际铺设长度,无需特殊工具,安装极为简便。
电缆结构编辑1、铜芯导线:7×0.50、19×0.32、19×0.412、导电塑料层:普通PTC、阻燃PTC、含氟PTC3、绝缘层:改良性聚烯烃、阻燃聚烯烃、含氟聚烯烃、全氟材料4、屏蔽层:镀锡软圆铜线,覆盖密度80%5、护套层:改良性聚烯烃、阻燃聚烯烃、含氟聚烯烃、全氟材料3、施工温度:最低:-5℃4、热稳定性:由15℃至99℃间来回循环300次后,电缆发热量维持在90%以上。