5势能面解析
- 格式:ppt
- 大小:2.43 MB
- 文档页数:20
搜索的内容:各种概念介绍分子反应动力学:分为:宏观反应动力学(Macroscopic Kinetics) 微观反应动力学(Microscopic Kinetics)即为分子反应动力学(Molecular Reaction Dynamics)。
(不同定义表述)1.在原子、分子的层次上研究化学反应微观动态和机理的一门科学,它所研究的基元反应和基元化学物理过程能够使人们了解化学反应的机理。
2.应用现代物理化学的先进分析方法,在原子、分子的层次上研究不同状态下和不同分子体系中单分子的基元化学反应的动态结构,反应过程和反应机理。
(张爱丽)3.分子反应动力学是现代物理与化学之间的一门边缘学科,是化学物理学科的一个重要分支。
它深入到分子或原子层次来研究化学反应的微观动态和机理。
分子反应动力学的研究主要包括:1)构建反应体系的势能面;2)计算该体系的微观动力学参量(如截面),这些参量是反应物的初态及产物终态的函数;3)通过积分截面得到宏观动力学参量(速率常数)注:基元反应:在反应中一步直接转化为产物的反应(又称简单反应)。
基元反应本身是指没有中间产物,一步完成的反应。
目前验证基元反应最科学的方法包括量子化学的模拟计算和以飞秒激光为代表的分子动力学手段。
通过计算机模拟反应过程可以得到一个反应的模拟过程,数据时很好的预测手段。
通过飞秒激光得到反应过程中各种物质的光谱变化,可以推断反应(张爱丽)过程中到底什么物质或者是物质的什么状态发生反应,从而最终确定反应的过程。
势能面的构建势能面的意义:基于电子运动和核运动可分离假定的势能面概念是现代化学物理学最重要的思想之一。
从动力学理论计算的角度来讲,势能面是最基本也是非常重要的一个因素,势能面的准确程度对动力学计算的结果有直接影响。
势能面的形状反映出整个化学反应过程的全貌以及反应的始终态、中间体和过渡态的基本态势。
在势能面上连接这些态的一条最容易实现的途径就是整个化学反应的路径。
4重力势能记一记重力势能知识体系1个概念-—重力势能1个关系——重力做功与重力势能变化的关系辨一辨1.物体的位置一旦确定,它的重力势能的大小也随之确定.(×)2.物体与零势能面的距离越大,它的重力势能也越大.(×)3.一个物体的重力势能从-5 J变化到-3 J,重力势能增加了.(√)4.在地面上的物体具有的重力势能一定等于零.(×)5.只要重力做功,重力势能一定变化.(√)6.物体做匀速直线运动时,重力势能一定不变.(×)7.物体的重力势能实际上是物体和地球组成的系统所共有的.(√)想一想1.在什么样的力场中才能引入“势能”的概念?提示:只有在做功与路径无关的力场中,才能引入“势能”的概念.2.质量越大的物体,重力势能是否越大?提示:不是.因重力势能是相对于所选参考平面——零势能面而言的,物体在参考平面上方的重力势能为正值,在参考平面下方的重力势能为负值.可知,若物体在参考平面的下方时,质量越大的物体的重力势能越小.3.重力势能的变化与所选参考平面的位置有关吗?提示:没有.因重力势能的变化在数值上等于重力做的功,而重力做的功只取决于初、末位置的高度差,与参考平面的位置无关.思考感悟:练一练1.[2019·山东省普通高中合格考试]如图所示,质量为m的工件悬吊在水平操作台面上方,工件重心离地面的高度为h1,操作台面离地面的高度为h2,已知重力加速度为g,若选操作台面为零势能面,则工件的重力势能为()A.mgh1B.mgh2C.mg(h1-h2) D.mg(h1+h2)答案:C2.[2019·北京市普通高中合格考试]在地面上以初速度v0把物体竖直向上抛出,经过时间t1,物体到达最高点.不计空气阻力,在上升过程中,物体的速度v随时间t的变化关系如图所示.在0~t1时间内,物体的重力势能( )A.保持不变B.逐渐减小C.逐渐增大D.先增大后减小答案:C3.[2019·浦东新区高中合格考试]如图所示,一个物体由静止开始,从A点出发分别经三个粗糙斜面下滑到同一水平面上的C1、C2、C3处.已知三个斜面的动摩擦因数都相同,则下列说法正确的是()A.物体到达C3处重力做功最多B.物体到达C2处重力做功最多C.物体到达C1处重力做功最多D.物体到达C1、C2、C3处重力做功相等答案:D4.[2019·河北武邑中学高一期末]一个100 g的小球从1。
2020-2021学年新教材粤教版物理必修第二册教师用书:第4章第5节机械能守恒定律含解析第五节机械能守恒定律学习目标:1.[物理观念]能够分析动能和势能之间的相互转化问题。
2。
[科学思维]会根据机械能守恒的条件判断机械能是否守恒。
3.[科学思维]能运用机械能守恒定律解决有关问题,并领会运用机械能守恒定律解决问题的优越性。
一、动能与势能的相互转化1.机械能动能、势能(包括重力势能和弹性势能)统称为机械能,在一定条件下,物体的动能与势能可以发生相互转化。
2.动能与重力势能间的转化只有重力做功时,若重力做正功,则重力势能转化为动能,若重力做负功,则动能转化为重力势能,转化过程中,动能与重力势能之和保持不变。
3.动能与弹性势能间的转化被压缩的弹簧把物体弹出去,射箭时绷紧的弦把箭弹出去,这些过程都是弹力做正功,弹性势能转化为动能。
二、机械能守恒定律的理论验证1.机械能守恒定律的内容在只有重力或弹力做功的系统内,动能和势能发生相互转化,而系统的机械能总量保持不变。
2.表达式(1)E p1+E k1=E p2+E k2。
(2)mgh1+错误!mv错误!=mgh2+错误!mv错误!。
1.思考判断(正确的打“√”,错误的打“×”)(1)物体自由下落时,重力做正功,物体的动能和重力势能都增加。
(×)(2)射箭时将弹性势能转化为动能. (√)(3)通过重力或弹力做功,机械能可以转化为非机械能. (×)(4)物体自由下落过程中经过A、B两位置,如图所示,此过程中物体的机械能一定守恒。
(√)2.(多选)一物体在做自由落体运动过程中,重力做了2 J的功,则()A.该物体重力势能减少2 JB.该物体重力势能增加2 JC.该物体动能减少2 JD.该物体动能增加2 JAD[在自由下落过程中,重力做了2 J的功,重力势能减少2J。
通过重力做功,重力势能转化为动能,则物体动能增加了2 J,故A、D正确,B、C错误.]3.(多选)从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,下列判断正确的是()A.落地时的速度相同B.落地时的动能相同C.从抛出到落回地面,竖直上抛时重力做功最多D.落地时机械能相同BD[三种抛法,重力做功相同,故落地时动能相同,但速度方向不同,故速度不同;抛出时三个球机械能相等,故落地时机械能相等。
第26讲反应热[课程标准] 1.了解反应热,焓变的概念,知道化学反应热效应与反应的焓变之间的关系。
2.知道常见的吸热反应和放热反应,能从多角度分析化学反应中能量变化的原因。
3.了解热化学方程式的含义,能正确书写热化学方程式。
考点一反应热、焓变1.化学反应中的能量变化(1)化学反应中的两大变化:物质变化和能量变化。
(2)化学反应中的两大守恒:质量守恒和能量守恒。
(3)化学反应中的能量转化形式:热能、光能、电能等。
通常主要表现为热量的变化。
2.焓变、反应热(1)焓(H):用于描述物质所具有能量的物理量。
(2)焓变(ΔH):ΔH=H(生成物)-H(反应物),单位kJ·mol-1。
(3)反应热:指当化学反应在一定压强下进行时,反应所放出或吸收的热量,通常用符号Q表示,单位kJ·mol-1。
(4)焓变与反应热的关系:对于恒压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能,则有:ΔH=Q p。
3.吸热反应与放热反应(1)从能量高低角度理解(2)从化学键角度理解[正误辨析](1)所有的燃烧反应都是放热反应,所以不需要加热就能进行()(2)反应物的总能量低于生成物的总能量时,一定不能发生反应()(3)一个反应的焓变因反应物的用量和反应条件的改变而发生改变()(4)可逆反应的ΔH表示完全反应时的热量变化,与反应是否可逆无关()(5)碳在空气中燃烧生成CO2,该反应中化学能全部转化为热能()(6)反应2SO 2(g)+O2(g)2SO3(g)ΔH=-Q kJ·mol-1(Q>0),则将2mol SO2(g)和1mol O2(g)置于一密闭容器中充分反应后放出Q kJ的热量()(7)活化能越大,表明化学反应吸收的能量越大()(8)C和H2O(g)、C和CO2、N2和O2的反应均为吸热反应()(9)Na2CO3溶于水,NaHCO3溶于水均放出热量()答案:(1)×(2)×(3)×(4)√(5)×(6)×(7)×(8)×(9)×一、反应热与能量变化关系图1.根据如图所示的反应,回答下列问题:(1)该反应是放热反应还是吸热反应?__________。
机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。
故A正确。
2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。
乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。
丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。
丁图中动能不变,势能不变,机械能守恒,D正确。
3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。
选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。
搜索的内容:各种概念介绍分子反应动力学:分为:宏观反应动力学(Macroscopic Kinetics) 微观反应动力学(Microscopic Kinetics)即为分子反应动力学(Molecular Reaction Dynamics)。
(不同定义表述)1.在原子、分子的层次上研究化学反应微观动态和机理的一门科学,它所研究的基元反应和基元化学物理过程能够使人们了解化学反应的机理。
2.应用现代物理化学的先进分析方法,在原子、分子的层次上研究不同状态下和不同分子体系中单分子的基元化学反应的动态结构,反应过程和反应机理。
(张爱丽)3.分子反应动力学是现代物理与化学之间的一门边缘学科,是化学物理学科的一个重要分支。
它深入到分子或原子层次来研究化学反应的微观动态和机理。
分子反应动力学的研究主要包括:1)构建反应体系的势能面;2)计算该体系的微观动力学参量(如截面),这些参量是反应物的初态及产物终态的函数;3)通过积分截面得到宏观动力学参量(速率常数)注:基元反应:在反应中一步直接转化为产物的反应(又称简单反应)。
基元反应本身是指没有中间产物,一步完成的反应。
目前验证基元反应最科学的方法包括量子化学的模拟计算和以飞秒激光为代表的分子动力学手段。
通过计算机模拟反应过程可以得到一个反应的模拟过程,数据时很好的预测手段。
通过飞秒激光得到反应过程中各种物质的光谱变化,可以推断反应过程中到底什么物质或者是物质的什么状态发生反应,从而最终确定反应的过程。
(张爱丽)势能面的构建势能面的意义:基于电子运动和核运动可分离假定的势能面概念是现代化学物理学最重要的思想之一。
从动力学理论计算的角度来讲,势能面是最基本也是非常重要的一个因素,势能面的准确程度对动力学计算的结果有直接影响。
势能面的形状反映出整个化学反应过程的全貌以及反应的始终态、中间体和过渡态的基本态势。
在势能面上连接这些态的一条最容易实现的途径就是整个化学反应的路径。
8.2重力势能【学习目标】1.认识重力做功与物体运动的路径无关的特点.2.理解重力势能的概念,会用重力势能的定义式进行有关计算.3.理解重力做功与重力势能变化的关系.4.知道重力势能具有相对性,知道重力势能是物体和地球所组成的系统所共有的.5.理解弹性势能的概念.【知识要点】一、重力做功W G=mgh W G= mglcosθ=mgh W G=mgh=mgh1-mgh21.特点:物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关(或者说只与初、末位置的高度差有关)。
2.计算式:W G =mgh =mgh1-mgh2二、重力势能1.定义:物体由于位于高处而具有的能量叫做重力势能.2.大小:物体的重力势能等于物体受到的重力和它的高度的乘积,即E p=mgh.三、重力做的功与重力势能变化的关系重力做的功等于重力势能的减小量:W G=E p1-E p2=-△Ep①物体由高处运动到低处时,重力做正功,物体重力势能减少;重力势能减少的数量等于重力做的功。
②物体由低处运动到高处时,重力做负功,物体重力势能增加;重力势能增加的数量等于物体克服重力做的功。
四、重力势能的相对性重力势能总是相对于某个水平面来说的,这个水平面叫参考平面.重力势能的正负表示大小:①对选定的参考平面而言,上方物体的高度是正值,重力势能也是正值;②下方物体的高度是负值,重力势能也是负值,重力势能为负。
③表示物体在这个位置具有的重力势能比在参考平面上具有的重力势能少。
五、弹性势能1.发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫作弹性势能。
2.W弹= -△E P:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加。
【题型分类】题型一、对重力做功的理解【例1】下面有关重力势能的说法中,正确的是()A. 举得越高的物体,具有的重力势能越大B. 质量越大的物体,具有重力势能越大C. 物体的重力势能不可能为零D. 物体的重力势能可能小于零答案D【同类练习】1.某游客领着孩子游泰山时,孩子不小心将手中质量为m的皮球滑落,球从A点滚到了山脚下的B 点,高度标记如图所示,则下列说法正确的是()A.从A到B的曲线轨道长度不知道,无法求出此过程中重力做的功B.从A到B过程中阻力大小不知道,无法求出此过程中重力做的功C.从A到B重力势能变化了mg(H+h)D.从A到B重力做功mgH【答案】D【解析】:重力做功与物体的运动路径无关,只与初、末状态物体的高度差有关。
1.5 双原子的势能曲线(1.3.1)式是在Born-oppenbeimer 近似下双原子分子中电子的运动方程,其中)(R U 为势能面. 对双原子分子来说,势能面仅是核间距R 的函数,因此在双原子分子情形下,势能面简化为势能曲线.氢分子是最简单的双原子分子,本节将以它为例讨论双原子分子势能曲线的一般特征.1.5.1 Heitler-London 方法以a 和b 分别标记两个氢原子,并同时分别标记它们的s 1轨道,1和2分别标记两个电子,如图1.3所示.图1.3 氢分子的坐标电子运动的Hamilton 算符为 Rr r r r r H b b a a 11111121211221212221++----∇-∇-= (1.5.1) 定义2111112a h r =-∇- , 2222112b h r =-∇- (1.5.2) 则有1221121111a b H h h r r r R=+--++ (1.5.3) Schrodinger 方程为 ψ=ψE H (1.5.4)1h 和2h 分别表示电子1和2各自单独在a 核和b 核的势场中运动,即它们分别是两个孤立氢原子的Hamilton 量. 当用微扰法处理时,可将(1.5.3)式的后四项作为微扰. 当两个核相距无穷远时,由图1.3可以看出,(1.5.3)式可简化为012H h h =+ (1.5.5)这时,氢分子的Hamilton 量是两个氢原子的Hamilton 量的直接和,因此(1.5.5)式的解是两个氢原子波函数的直接积. 假定氢原子波函数取1s 轨道,暂时不考虑自旋,由于电子的不可分辨性,这样的直接积有两个,即)2()1(b a (1.5.6)和)1()2(b a (1.5.7)式中ai r a e i s i a -==π1)(1)( , bi r b e i s i b -==π1)(1)( (1.5.8) (1.5.6)和(1.5.7)式是简并的,称为交换简并,氢分子的零级近似波函数应该是二者的线性组合. 有两种组合方法,一种是对称组合,即将两式相加,另一种是反对称组合,即将两式相减. 进一步考虑自旋,电子为费米子,应满足Pauli 原理,即波函数对两个电子的交换是反对称的. 如果空间函数取作对称的,则自旋函数必须是反对称的,这样的反对称自旋函数只有一个,因此总波函数也只有一个,称为单重态,记作ψ1,即)]1()2()2()1([21)]1()2()2()1([1βαβα-+=ψb a b a N (1.5.9)式中,N 为空间波函数的归一因子,)(i α和)(i β分别为电子i 的自旋波函数,)(i α仅在21=i s 处有值,其他处皆为0,而)(i β仅在21-=i s 处有值,i s 为i 电子的自旋值,并且有⎰=1)(2i ds i α, ⎰=1)(2i ds i β, ⎰=0)()(i ds i i βα (1.5.10) 如果空间函数是反对称的,则自旋函数必须是对称的. 对称的自旋函数可以有三个,它们共同构成一个三重态,用ψ3表示, 即⎪⎪⎩⎪⎪⎨⎧+-=ψ)2()1()]2()2()2()1([21)2()1()]1()2()2()1(['3βββαβαααb a b a N (1.5.11) 式中'N 为ψ3的空间函数的归一化因子. 不难证明ψ1和ψ3都是总自旋算符2S 和z S 的本征函数,2S 的本征值分别为0和1. 2S 和z S 的定义为2212()S s s =+ , 12z z z S s s =+ (1.5.12)其中i s 为i 电子的自旋算符,而zi s 为i 电子自旋的z 分量算符. 我们常常将算符和它的本正值用同一个符号表示,一般情况下,这样做不会引起混淆. 令(1)(1)ab M a b = (1.5.13)ab M 称为原子轨道a 和b 的重叠积分. 由ψ1和ψ3的归一化条件可得122[2(1)]ab N M -=+,1'22[2(1)]ab N M -=- (1.5.14) 将(1.5.9)和(1.5.11)式分别代入(1.5.4)式,因Hamilton 量(1.5.3)式中不含自旋,故可将自旋函数先行积分,得到11121[(1)(2)(1)(2)(1)(2)(1)(2)]1abE H a b H a b a b H b a M =ψψ=++ 21ab Q K M +=+ (1.5.15) 33321abQ K E H M -=ψψ=- (1.5.16) 式中,)2()1()2()1(b a H b a Q =称为库仑积分,)2()1()2()1(a b H b a K =称为交换积分.在量子化学中,库仑积分和交换积分是两个重要术语,原则上讲,任何二体算符的矩阵元都有库仑积分和交换积分. 这里指的是Hamilton 量的矩阵元,在另外的场合可能指的是其他算符的矩阵元,例如电子排斥积分的矩阵元也分为库仑积分和交换积分. 不论算符如何不同,库仑积分都是指与经典电荷密度相对应的矩阵元,而交换积分都是指与交换电荷密度相对应的矩阵元. 例如上式库仑积分Q 中的电荷密度为)1()1(*a a 和)2()2(*b b ,而交换积分K 中的电荷密度为)1()1(*b a 和)2()2(*a b . 交换电荷密度来自Pauli 原理,是量子力学中特有的,没有经典对应. 以下几章中出现库仑积分和交换积分时,不再一一说明.(1.5.15)和(1.5.16)式表明,E 1和E 3都是核间距R 的函数. 给R 不同的值,逐点计算出Q 和K ,将这些点连结起来就可以得到E 1和E 3随R 变化的曲线,即势能曲线. 本节中我们不介绍计算的具体细节,仅叙述计算结果. 通常取孤立氢原子基态的能量00Hε=,即把两个氢原子相距无穷远时作为能量零点,此时可得如图1.4所示的势能曲线.图1.4氢分子的势能曲线(价键法)图1.4中,1∑和3∑中的左上角数字1和3分别表示单态和三重态,符号∑是点群h D ∞的一维不可约表示的标记(氢分子具有h D ∞对称性),表示电子的总轨道角动量沿原子核连线方向的分量量子数0=m L . 从图中可以看到,对于3∑态,当两个氢原子从无穷远开始相互靠近时,体系的能量一直上升,始终表现为相互排斥;而对于1∑态,当两个氢原子相互靠近时,体系的能量先下降,达到一极小值后再上升,形成一个势阱,两个原子被束缚在势阱中而形成稳定分子. 与能量极小值对应的核间距被称为平衡核间距或平衡键长,势阱深度被定义为结合能. 按(1.5.15)式计算的平衡键长nm R 080.00=,结合能ev D 20.3=,而实验值ev D nm R 75.4 ,074.00==,这表明,计算得到的势阱位置和深度都与实验值有差别. 为便于比较,图1.4中也给出了势能曲线的实验观测结果以及谐振子的势能曲线(抛物线U ).以上处理氢分子的方法是Heitler -London 首先提出的,因此被称为Heitler -London 方法. (1.5.9)和(1.5.11)被称为Heitler -London 波函数. Heitler -London 方法所得的结果与实验值虽然还有较大差距,但它却提供了许多重要的物理思想,并具有明确的物理图像. 在电子自旋反平行的1∑态,两个氢原子能够形成稳定分子,而在电子自旋平行的3∑态,则不能形成稳定分子. 这一事实表明,两个原子之所以能形成分子,就在于所共用的两个电子自旋反平行配对,从而用量子理论解释了化学键的成因,建立了现代化学键理论的基础. 作为化学键理论一个重要分支的价键理论,就是在Heitler -London 工作的基础上发展起来的.1.5.2分子轨道方法现在用分子轨道理论研究氢分子的势能曲线. 我们仍然假定每个氢原子提供一个s 1原子轨道,并采用上节的记号. 价键法直接由原子轨道构造总电子波函数,而分子轨道法则先由原子轨道组合成分子轨道,然后由分子轨道构造总电子波函数. 将两个原子轨道分别做对称组合和反对称组合可以得到两个分子轨道,分别记作A 和B ,即)A a b =+ (1.5.17) )B a b =- (1.5.18) 式中M 的定义见(1.5.13)式。
动能、势能、动能定理目标认知学习目标1.理解动能、势能的概念,会计算物体的动能和势能。
2.理解重力势能变化和重力做功的关系,知道重力做功与路径无关是重力做功的特点。
3.了解弹性势能并探究弹性势能与哪些因素有关。
4.理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。
5.会推导动能定理。
学习重点、难点1.理解动能定理,会使用动能定理进行计算。
2.探究功与物体速度变化的关系。
知识要点梳理知识点一:重力势能要点诠释:1.重力做功及特点物体运动时,重力对它做的功只跟它起点和终点的位置有关,而跟物体运动的路径无关;物体被举高时,重力做负功,物体下降时,重力做正功。
2.重力势能(1)物体的重力势能等于它所受重力与所处高度的乘积(2)重力势能的表达式:,国际单位是焦耳(J)(3)重力势能是状态量,它描述了物体所处的一定状态,与物体所处的位置或时刻对应(4)重力势能具有相对性、系统性。
重力势能为物体与地球这个系统所共有的。
中的是相对参考平面的高度,物体在参考平面的上方,重力势能为正,反之为负,重力势能的大小与参考平面的选择有关,同一物体选择不同的参考平面会有不同的重力势能值。
3.重力做功跟重力势能变化的关系重力势能的变化过程,也是重力做功的过程,二者的关系为,表示在初位置的重力势能,表示在末位置的重力势能(1)当物体由高处运动到低处时,,表明重力做正功时,重力势能减少,减少的重力势能等于重力所做的功。
(2)当物体由低处运动到高处时,,表明重力做负功时(即物体克服重力做功),重力势能增加,增加的重力势能等于克服重力所做的功。
知识点二:探究弹性势能的表达要点诠释:1.弹性势能发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫做弹性势能。
2.弹性势能的大小跟形变的大小有关,形变量越大,弹性势能越大。
对于弹簧来说,弹性势能还与劲度系数有关,当形变量一定时,劲度系数越大的弹簧弹性势能也越大。