弯曲正应力强度条件.
- 格式:ppt
- 大小:1.67 MB
- 文档页数:7
弯曲正应力强度条件弯曲正应力强度条件,是指在材料发生弯曲加载时,使材料内部产生的正应力不超过其破坏强度的条件。
在工程设计和结构分析中,了解和应用弯曲正应力强度条件十分重要,因为它可以帮助我们确定结构的合理尺寸和材料的选择,以确保结构的安全可靠。
弯曲是指外加力矩或弯矩作用下,材料发生弯曲变形。
当材料受到弯矩作用时,其横截面上会产生正应力和剪应力。
其中,弯曲正应力是指与弯曲轴垂直的方向上的应力,其计算公式为σ = M * y / I,其中M是弯矩,y是距离弯曲轴的垂直距离,I是截面惯性矩。
弯曲正应力会导致材料发生弯曲破坏,因此我们需要控制这一应力。
对于材料的弯曲正应力强度条件,常见的有屈服强度条件和疲劳强度条件。
屈服强度条件是指弯曲正应力不应超过材料的屈服强度。
材料的屈服强度是指在特定的加载条件下,材料产生塑性变形的临界应力。
在设计中,我们通常选择使弯曲正应力小于等于材料的屈服强度,以确保材料在加载过程中不会发生塑性变形。
疲劳强度条件是指材料在循环加载下,弯曲正应力不应超过材料的疲劳强度。
材料在长时间的循环加载下容易发生疲劳破坏,因此我们需要控制弯曲正应力,以避免疲劳破坏的发生。
疲劳强度通常通过材料的疲劳寿命曲线来表示,我们需要使弯曲正应力小于等于材料对应寿命下的疲劳强度。
为了满足弯曲正应力强度条件,我们可以通过合理的结构设计、材料选择和工艺控制来实现。
首先,结构设计应考虑材料的弯曲特性,避免产生过大的弯矩和应力集中现象。
合理选择结构截面形状和尺寸,以增加结构的承载能力和抗弯性能。
其次,材料的选择应根据力学性能和使用环境来确定。
不同材料的弯曲正应力强度条件有所不同,我们需要选择具有足够强度和韧性的材料,以确保结构的安全工作。
最后,工艺控制也是实现弯曲正应力强度条件的关键。
合理的工艺控制可以提高材料的力学性能和强度,如控制材料的冷加工、热处理和表面处理等。
总之,了解和应用弯曲正应力强度条件对于工程设计和结构分析至关重要。
弯曲正应力强度条件弯曲应力与弯曲正应力在工程力学中,弯曲是指物体在受到外部力矩作用下发生形变的过程。
当物体受到外部力矩作用时,会产生内部的弯曲应力。
弯曲应力是指材料内部由于受到外部力矩作用而产生的应力。
弯曲应力可以分为正应力和剪应力两个分量。
其中,正应力是垂直于截面的应力分量,剪应力则是平行于截面的应力分量。
本文将重点讨论弯曲正应力的强度条件。
弯曲正应力的定义弯曲正应力是指与截面法线方向相同的剖面上所受到的垂直于该剖面方向的拉伸或压缩效果产生的内部正应力。
弯曲正应力强度条件在设计工程结构时,需要保证结构在使用过程中不发生断裂或失效。
为了满足这一要求,需要对结构进行合理设计,并保证其满足一定的强度条件。
对于弯曲结构而言,其强度条件主要包括抗拉和抗压两个方面。
在弯曲结构中,正应力最大的位置往往出现在截面的远离中性轴的位置,因此我们需要对这一位置的正应力进行分析和计算。
根据弯曲理论,弯曲正应力的大小与弯矩、截面形状和材料性质有关。
在设计过程中,我们通常采用强度理论来确定结构是否满足弯曲正应力的要求。
常用的强度理论包括极限平衡法、变形能法和应变能密度法等。
这些方法都是通过建立结构受力平衡方程、变形能方程或应变能密度方程来判断结构是否满足强度条件。
极限平衡法极限平衡法是一种常用的判断结构强度的方法。
该方法基于平衡条件,通过假设截面内部存在一个平衡状态来分析结构受力情况。
在弯曲结构中,我们可以假设截面内部存在一个剖面,使得该剖面上各点处的正应力达到最大值。
然后根据受力平衡条件,在该剖面上建立受力平衡方程。
根据极限平衡法得到的受力平衡方程,我们可以计算出弯曲正应力的最大值,并与材料的抗拉或抗压强度进行比较,从而判断结构是否满足强度条件。
变形能法变形能法是另一种常用的判断结构强度的方法。
该方法基于变形能原理,通过假设截面内部存在一个平衡状态来分析结构受力情况。
在弯曲结构中,我们可以假设截面内部存在一个剖面,使得该剖面上各点处的正应力达到最大值。
第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。
,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。
根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。
横截面只是绕其面内的某一轴线刚性地转了一个角度。
这就是弯曲变形的平面假设。
(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。
(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。
当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。
中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。
(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。
它只与截面图形的几何性质有关,其量纲为[]3长度。
矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。
若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。
这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。
最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。
正应力强度计算(1)正应力强度条件一般情况下,梁弯曲时,各个截面上的弯矩和剪力是变化的,而且截面上的应力(包括正应力和切应力)分布是不均匀的。
对等截面梁而言,最大弯矩所在的截面称为危险截面。
危险截面上距中性轴最远的点(上下边缘处)称为危险点。
显然危险截面上危险点处的应力值即为梁内的最大正应力值,即:zz W M max max =σ 保证梁内最大正应力不超过材料的许用应力,就是梁的强度条件。
根据材料力学性能的不同,具体分以下两种情况讨论:● 塑性材料塑性材料的力学性能是许用拉应力和许用压应力相等,所以拉压许用应力不在区分,统称为许用应力,即表示为[][][]t c σσσ==。
梁横截面的形式可分为两种情况,一种是横截面关于中性轴对称,一种是横截面关于中性轴不对称。
但无论那种情况,只要使梁内绝对值最大的正应力不超过材料的许用应力值即可。
所以危险点则发生在最大弯矩作用的截面离中性轴最远的点处。
强度条件为: []z max max zM W =≤σσ 为了使横截面上最大拉压应力同时达到其许用应力,工程中通常将塑性材料梁的横截面做成关于中性轴对称的形状。
● 脆性材料脆性材料的力学性能是许用拉应力小于许用压应力,即[][]t c σσ<。
针对上述两种截面形式建立梁的弯曲正应力强度条件。
1)横截面关于中性轴对称荷载作用下在梁内产生的最大拉压应力相等,而材料的[][]t c σσ<,所以强度条件为:[]z max t max t zM W σσ≤ 2)横截面关于中性轴不对称为了充分利用材料,通常将脆性材料梁的横截面做成关于中性轴不对称的形状,且中性轴靠近受拉侧。
所以强度条件应为:[][]1122z t max t z z c max t zM y I M y I σσσσ=≤=≤ 式中:t max σ、c max σ——分别为最大拉应力和最大压应力;1z M 、2z M ——分别为产生最大拉应力和最大压应力截面上的弯矩; []t σ、[]c σ——分别为许用拉应力和许用压应力。