7-2梁弯曲的正应力强度条件.
- 格式:ppt
- 大小:55.50 KB
- 文档页数:5
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
梁弯曲时的正应力§7-1 梁弯曲时的正应力一、纯弯曲时的正应力如图7-2a 所示的简支梁,荷载与支座反力都作用在梁的纵向对称平面内,其剪力图和弯矩图加图7-2b 、c 所示。
在梁的AC 和DB 段内,各横截面上同时有剪力和弯矩,这种弯曲称为剪力弯曲或横力弯曲。
在CD 段中,各横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲。
b )c )a )图7-2为了使问题简单,现以矩形截面梁为例,推导梁在纯弯曲时横截面上的正应力。
其方法和推导圆轴在扭转时的剪应力公式的方法相同,从几何变形、物理关系和静力学关系等三方面考虑。
1、几何变形为观察梁纯弯曲时的表面变形情况,在矩形截面梁的表面画上一些纵向直线和横向直线,形成许多小矩形,然后在梁两端对称位置上加集中荷载P ,梁受力后产生对称变形,在两个集中荷载之间的区段产生纯弯曲变形,如图7-3所示。
从实验中观察到如下现象:m n nma )b )d )ij i j图7-31)所有纵向直线均变为曲线,靠近顶面(凹边)的纵向线缩短,靠近底面(凸边)的纵向线伸长,如图7-3b 中的i ′—i ′和j ′—j ′。
2)所有横向直线仍为直线,只是各横向线之间作了相对转动,但仍与变形后的纵向线正交, 如图7-3b 中的m ′—m ′。
3)变形后横截面的高度不变,而宽度在纵向线伸长区减小,在纵向线缩短区增大,如图7-3b 右所示。
根据以上观察到的现象,并将表面横向直线看作梁的横截面,可作如下假设:1)平面假设:变形前为平面的横截面,变形后仍为平面,它像刚性平面一样绕某轴旋转了一个角度,但仍垂直于梁变形后的轴线。
2)单向受力假设:认为梁由无数微纵向纤维组成。
各纵向纤维的变形只是简单的拉伸或压缩,各纵向纤维无挤压现象。
根据平面假设,梁变形后的横截面转动,使得梁的凸边纤维伸长,凹边纤维缩短。
由变形的连续性可知,中间必有一层纤维既不伸长也不缩短,此层纤维称为中性层,如图7-3d 所示。