正应力强度条件
- 格式:ppt
- 大小:341.00 KB
- 文档页数:46
弯曲正应力强度条件弯曲正应力强度条件,是指在材料发生弯曲加载时,使材料内部产生的正应力不超过其破坏强度的条件。
在工程设计和结构分析中,了解和应用弯曲正应力强度条件十分重要,因为它可以帮助我们确定结构的合理尺寸和材料的选择,以确保结构的安全可靠。
弯曲是指外加力矩或弯矩作用下,材料发生弯曲变形。
当材料受到弯矩作用时,其横截面上会产生正应力和剪应力。
其中,弯曲正应力是指与弯曲轴垂直的方向上的应力,其计算公式为σ = M * y / I,其中M是弯矩,y是距离弯曲轴的垂直距离,I是截面惯性矩。
弯曲正应力会导致材料发生弯曲破坏,因此我们需要控制这一应力。
对于材料的弯曲正应力强度条件,常见的有屈服强度条件和疲劳强度条件。
屈服强度条件是指弯曲正应力不应超过材料的屈服强度。
材料的屈服强度是指在特定的加载条件下,材料产生塑性变形的临界应力。
在设计中,我们通常选择使弯曲正应力小于等于材料的屈服强度,以确保材料在加载过程中不会发生塑性变形。
疲劳强度条件是指材料在循环加载下,弯曲正应力不应超过材料的疲劳强度。
材料在长时间的循环加载下容易发生疲劳破坏,因此我们需要控制弯曲正应力,以避免疲劳破坏的发生。
疲劳强度通常通过材料的疲劳寿命曲线来表示,我们需要使弯曲正应力小于等于材料对应寿命下的疲劳强度。
为了满足弯曲正应力强度条件,我们可以通过合理的结构设计、材料选择和工艺控制来实现。
首先,结构设计应考虑材料的弯曲特性,避免产生过大的弯矩和应力集中现象。
合理选择结构截面形状和尺寸,以增加结构的承载能力和抗弯性能。
其次,材料的选择应根据力学性能和使用环境来确定。
不同材料的弯曲正应力强度条件有所不同,我们需要选择具有足够强度和韧性的材料,以确保结构的安全工作。
最后,工艺控制也是实现弯曲正应力强度条件的关键。
合理的工艺控制可以提高材料的力学性能和强度,如控制材料的冷加工、热处理和表面处理等。
总之,了解和应用弯曲正应力强度条件对于工程设计和结构分析至关重要。
第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。
为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。
一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。
塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。
例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。
杆端均用铰链连接。
在结点B 作用一载荷P=60kN 。
已知钢的许用应力[]σ=140MPa 。
木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。
(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。
解 (1)校核托架强度 如图6-29(b)。
图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。
正应力强度计算(1)正应力强度条件一般情况下,梁弯曲时,各个截面上的弯矩和剪力是变化的,而且截面上的应力(包括正应力和切应力)分布是不均匀的。
对等截面梁而言,最大弯矩所在的截面称为危险截面。
危险截面上距中性轴最远的点(上下边缘处)称为危险点。
显然危险截面上危险点处的应力值即为梁内的最大正应力值,即:zz W M max max =σ 保证梁内最大正应力不超过材料的许用应力,就是梁的强度条件。
根据材料力学性能的不同,具体分以下两种情况讨论:● 塑性材料塑性材料的力学性能是许用拉应力和许用压应力相等,所以拉压许用应力不在区分,统称为许用应力,即表示为[][][]t c σσσ==。
梁横截面的形式可分为两种情况,一种是横截面关于中性轴对称,一种是横截面关于中性轴不对称。
但无论那种情况,只要使梁内绝对值最大的正应力不超过材料的许用应力值即可。
所以危险点则发生在最大弯矩作用的截面离中性轴最远的点处。
强度条件为: []z max max zM W =≤σσ 为了使横截面上最大拉压应力同时达到其许用应力,工程中通常将塑性材料梁的横截面做成关于中性轴对称的形状。
● 脆性材料脆性材料的力学性能是许用拉应力小于许用压应力,即[][]t c σσ<。
针对上述两种截面形式建立梁的弯曲正应力强度条件。
1)横截面关于中性轴对称荷载作用下在梁内产生的最大拉压应力相等,而材料的[][]t c σσ<,所以强度条件为:[]z max t max t zM W σσ≤ 2)横截面关于中性轴不对称为了充分利用材料,通常将脆性材料梁的横截面做成关于中性轴不对称的形状,且中性轴靠近受拉侧。
所以强度条件应为:[][]1122z t max t z z c max t zM y I M y I σσσσ=≤=≤ 式中:t max σ、c max σ——分别为最大拉应力和最大压应力;1z M 、2z M ——分别为产生最大拉应力和最大压应力截面上的弯矩; []t σ、[]c σ——分别为许用拉应力和许用压应力。
弯曲正应力强度条件的内容弯曲正应力强度条件的内容一、弯曲正应力强度条件的定义弯曲正应力强度条件是指在材料受到弯曲时,其最大正应力不能超过该材料的屈服极限。
这个条件是一种基本的材料设计原则,它可以用来保证材料在使用过程中不会发生破坏。
二、弯曲正应力强度条件的计算公式在进行弯曲试验时,我们通常会测量出受试样件上的最大正应力。
这个最大正应力可以通过下面的公式来计算:σ = M*y/I其中,σ表示最大正应力;M表示试样受到的最大弯矩;y表示试样截面上离中性轴距离最远的点到中性轴距离;I表示试样截面对中性轴的惯性矩。
三、弯曲正应力强度条件与屈服极限之间的关系根据材料学理论,屈服极限是指材料在受到外部载荷作用下开始发生塑性变形并且无法恢复原来形态时所承受的最大载荷。
因此,在进行材料设计时,我们需要确保所选用的材料的屈服极限大于或等于试样受到的最大正应力。
四、弯曲正应力强度条件的应用弯曲正应力强度条件是一种非常重要的材料设计原则,它可以用来保证材料在使用过程中不会发生破坏。
这个原则在许多不同领域都有广泛的应用,例如:1. 桥梁设计:在桥梁设计中,我们需要确保桥梁所使用的材料能够承受车辆和行人的重量。
因此,在进行桥梁设计时,我们需要计算出桥梁受到最大荷载时所承受的最大正应力,并且确保该正应力小于所选用材料的屈服极限。
2. 航空航天工业:在航空航天工业中,我们需要确保飞机和火箭等载具所使用的材料能够承受高速飞行时产生的巨大载荷。
因此,在进行航空航天工业设计时,我们需要计算出载具受到最大荷载时所承受的最大正应力,并且确保该正应力小于所选用材料的屈服极限。
3. 机械制造业:在机械制造业中,我们需要确保机械零件所使用的材料能够承受工作时所产生的载荷。
因此,在进行机械设计时,我们需要计算出机械零件受到最大荷载时所承受的最大正应力,并且确保该正应力小于所选用材料的屈服极限。
五、弯曲正应力强度条件的局限性尽管弯曲正应力强度条件是一种非常重要的材料设计原则,但是它仍然存在一些局限性。