交流伺服与变频技术导论
- 格式:ppt
- 大小:4.16 MB
- 文档页数:36
1. 变频技术2. 变频器的认识一、定义1. 什么叫变频器:变频器就是改变电源频率的电气设备。
2. 三相异步电动机:以三相电源为动力源,实际转速与同步转速不一致的电动机。
如:抽水泵上的电动机。
3. 什么叫三相电源:三相电源就是相与相之间的电压相等,相角度相差120的三相电源。
4. 什么叫单相电源:只有一相的电源叫单相电源,电压参考点为大地或中性点。
如:每家每户所用的照明电源。
5. 什么叫线电压:相线与相线之间的电压叫做线电压。
(国标为380V)6. 什么叫相电压:相线与零线之间的电压叫做相电压。
(国标为220V)3. 二、三相异步电动机的作用和特性:1. 三相异步电动机的作用:通过三相异步电动机运转(正转或反转)来带动其它设备做各种各样的机械运动。
2. 三相异步电动机的特性:1) 运转方式:靠旋转磁场来带动电动机转子额定电流为约等于其功率的二倍额定电流为约等于其功率的二倍V/F控制变频器力矩力电机力力转。
2) 接线方式:有星形(Y形)和三角形(△形)两种,Y形接线时,电动机的电流小,但力矩也小,三角形(△形)接线时电动机的电流大,但力矩大;3) 变速:n=60f (1-K)/pn—电动机转速 60—常数 p—极对数f —电源频率 k—滑差系数公式说明:只要改变电源频率“f”或极对数“p”,就可以改变电动机转速。
三相异步电动机有2极、4极、6极、8极……,工业用的三相异步电动机一般极数不会超过8极,极数越多,转速越慢,但力矩就越大,极数越少,转速就越快,但力矩就越小;每种极数所对应的转速如下:a) 2极──2950转/分(理想3000转/分,即同步转速)b) 4极──1450转/分(理想1500转/分,即同步转速)c) 6极──950转/分(理想1000转/分,即同步转速)d) 8极──700转/分(理想750转/分,即同步转速)4. 三、变频器的作用:1. 调速:普通的三相异步电动机,加装变频后可以实现调速功能。
交流伺服与变频技术及应用(第4版)配套习题及答案习题一:伺服系统基本原理1.请简要介绍伺服系统的基本原理。
答:伺服系统是一种闭环控制系统,通过将反馈信号与期望信号相比较,并根据差异进行调节和控制,以实现准确的位置控制、速度控制和力控制等功能。
伺服系统由电机、传感器、控制器和执行机构组成,其中电机负责转换电能为机械能,传感器负责采集反馈信号,控制器根据期望信号和反馈信号进行控制计算,执行机构负责输出控制信号。
2.什么是PWM调制?它在伺服控制系统中有什么作用?答:PWM调制(Pulse Width Modulation)是一种将模拟信号转换为脉冲信号的技术。
在伺服控制系统中,PWM调制被用于控制电机的速度和位置。
通过改变脉冲信号的占空比,即高电平时间与周期时间的比例,可以控制电机的转速和位置精度。
PWM调制技术具有简单、高效的特点,可以有效地控制电机的输出功率和响应速度。
3.请说明伺服系统的静态误差、动态特性和稳定性分析。
答:伺服系统的静态误差是指系统在达到期望位置后的偏差。
静态误差可以通过改变控制器参数或增加反馈环节来进行补偿。
动态特性是指系统在输入信号发生变化时的响应特性,包括响应时间、超调量和稳定性等方面。
稳定性分析主要是通过判断系统的闭环极点位置来决定系统是否稳定,在控制系统中,极点位置在左半平面表明系统是稳定的。
习题二:交流伺服系统的电机选择与控制1.交流伺服系统选择电机时需要考虑哪些因素?答:选择交流伺服系统的电机时需要考虑以下因素:负载特性、转矩要求、转速要求、输出功率、尺寸和重量、成本以及可靠性等。
负载特性包括负载惯性、负载转矩和负载扭矩等,转矩要求和转速要求决定了电机的选型范围,输出功率需要满足负载要求,尺寸和重量需要适应装置的安装空间,成本和可靠性是选择电机时重要考虑的因素。
2.请简要介绍交流伺服电机常用的控制方法。
答:交流伺服电机常用的控制方法有位置控制、速度控制和力控制。
位置控制是将电机控制到预定位置,通常使用PID控制器来精确控制电机的位置。
《交流伺服与变频技术》课程标准课程名称:《交流伺服与变频技术》课程编码:10731108课程类型:理实一体化开课部门:机械工程系适用专业及参考学时:专业名称专业方向参考学分参考学时数控设备应用与维护各方向通用464一,前言1. 课程性质交流伺服与变频器在工业自动化领域地应用已经越来越广泛,交流调速代替传统地直流调速已成为工业自动化领域地趋势。
为了使学习内容能紧跟技术发展,以适应职业岗位地需求,特开设本课程。
本课程是《机电一体化》,《数控设备应用与维护专业》,《机电设备维护》等机电类专业地通用专业基础课程,是学生掌握面广量大地通用型交流伺服与变频器基础知识与应用,维修技能地支撑课程。
通过本课程学习,学生应掌握机电一体化设备应用与维修员在交流伺服与变频器应用与维修方面所需地理论知识;使得学生能够根据不同地控制要求,规划问题解决方案;能利用变频器与交流伺服地功能解决工程实际问题;能熟练操作,使用通用型交流伺服与变频器;并初步具备故障地分析与维修能力。
课程开设一学期,64 学时/4 学分。
2. 课程定位《交流伺服与变频技术》课程地教学重点是用于通用机械,纺织机械,包装机械,自动线,工业机器及配套产数控系统地普及型数控机床等机电一体化设备地通用型交流伺服与变频器,课程不包括全功能型数控系统所配套地交流伺服与主轴系统方面地内容。
课程内容涉及电力电子技术,运动控制技术,自动控制技术等,分变频器与交流伺服两个学习领域。
由于变频器与交流伺服地结构,原理,用途相近,出于知识与技能体系地考虑,课程设置时原则上应将两个学习领域合并,以增加系统性,避免学习内容地重复与交叉。
《交流伺服与变频技术》开设前,学生通过《机床电气控制与 PLC》,《电工与工业电子学》等课程地学习获得强电控制,变频调速与伺服,PLC 等数控系统主要组成部分地知识基础与安装调试地基本技能,然后进入本课程地学习。
本课程学习获得地知识与技能是后续地《数控系统连接与调试》,《数控机床故障诊断与维修》等课程学习过程地数控系统连接与调试,数控机床故障诊断与排除准备了知识与技能基础。
课件教案教学记录-交流伺服与变频技术及应用一、教学目标1. 了解交流伺服与变频技术的概念及其在工业中的应用。
2. 掌握交流伺服与变频技术的工作原理和特点。
3. 学会分析交流伺服与变频控制系统的设计和应用。
4. 能够运用交流伺服与变频技术解决实际工程问题。
二、教学内容1. 交流伺服与变频技术的概念2. 交流伺服与变频技术的工作原理3. 交流伺服与变频技术的特点4. 交流伺服与变频控制系统的应用案例5. 交流伺服与变频技术在工业中的重要作用三、教学方法1. 采用多媒体课件进行讲解,结合实物图片和动画,增强学生的直观感受。
2. 通过实例分析,让学生了解交流伺服与变频技术在实际工程中的应用。
3. 开展小组讨论,引导学生思考和探讨交流伺服与变频技术的优缺点。
4. 利用课后习题,巩固所学知识,提高学生的实际操作能力。
四、教学准备1. 准备相关课件和教学资料。
2. 准备实物模型或图片,以便进行直观讲解。
3. 准备案例分析资料,以便进行实际应用的讲解。
4. 准备课后习题,以便进行知识巩固。
五、教学过程1. 引入话题:介绍交流伺服与变频技术在现代工业中的重要地位。
2. 讲解交流伺服与变频技术的概念,通过实物图片和动画进行展示。
3. 详细讲解交流伺服与变频技术的工作原理,结合实例进行分析。
4. 分析交流伺服与变频技术的特点,引导学生思考其优势和不足。
5. 讲解交流伺服与变频控制系统的应用案例,展示其在实际工程中的应用。
6. 开展小组讨论,让学生探讨交流伺服与变频技术的应用前景。
7. 通过课后习题,巩固所学知识,提高学生的实际操作能力。
8. 总结本节课的重点内容,布置课后作业。
六、教学评估1. 课堂讲解过程中,观察学生对交流伺服与变频技术概念的理解程度。
2. 分析学生在实例分析中的表现,了解其对交流伺服与变频技术应用的掌握情况。
3. 课后收集学生的习题答案,评估其对课堂所学知识的巩固程度。
4. 鼓励学生提出问题,了解其在学习过程中遇到的困难和问题,及时进行解答和指导。