反比例函数的性质
- 格式:docx
- 大小:24.19 KB
- 文档页数:2
【本讲教育信息】一. 教学内容:1. 反比例函数的定义.2. 反比例函数的图象和性质.二. 知识要点: 1. 反比例函数(1)一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数.其表达式也可以写成y =kx -1,有时利用变形式子xy =k .(2)确定解析式的方法仍是待定系数法,由于在反比例函数y =kx 中,只有一个待定系数,因此只需一对对应值或图象上一个点的坐标,即可求出k 的值,从而确定解析式. 2. “反比例关系”与“反比例函数”的异同 如果xy =k (k 是常数,k ≠0),那么x 与y 这两个量成反比例关系,这里x 、y 既可代表单独的一个字母,也可代表多项式或单项式,成反比例的关系式,不一定是反比例函数,如y -3=k z +2中,y -3与z +2成反比例,但y 与z 不是反比例函数;又如y =2x 2中,y 与x 2成反比例,但y ,x 不是反比例函数,但反比例函数y =kx (k ≠0)中的两个变量必成反比例关系.3. 反比例函数的性质和图象(1)反比例函数的图象的形状是双曲线,它不是连续的整体图形,而是断开的两个独立的分支,它无限接近两坐标轴但永远也不能到达坐标轴.(2)反比例函数的图象的位置与增减性,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.(3 4. 反比例函数y =kx (k ≠0)中的比例系数k 的几何意义过双曲线y =kx上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON 的面积为S=PM ·PN =︱y ︱·︱x ︱=︱xy ︱,∵y =kx ,∴xy =k ,∴S =︱k ︱.即①过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为︱k ︱.②过双曲线上任意一点作x 轴(y 轴)的垂线,由该点、垂足和原点所构成的三角形的面积都是12︱k ︱.三. 重点难点:本节的重点是反比例函数的图象和性质,难点是在学习过程中要全面理解其性质及图象的特征,结合图象来理解,采用数形结合的思想方法.【典型例题】例1. 判断下列函数式,y 与x 是反比例函数关系的有哪些?①y =2x +1;②y =πx ;③y =a x ;④y =4x 2+x -x 2;⑤xy =3;⑥y =13x ;⑦x (y +1)=3;⑧2x ·3y =7.分析:按照反比例函数关系式的特征判断.①中,y 与x +1成反比例,不是y 与x 成反比例.③中没有说明a 的条件.⑦化简后为y =3x-1不符合反比例函数的形式,所以①③⑦不是反比例函数.对于②中,π为常数.④中化简得y =4x .⑤可变形为y =3x.⑥可变形为y =13x .⑧可变形为y =76x .都符合反比例函数的一般形式,所以②④⑤⑥⑧是反比例函数. 解:②④⑤⑥⑧是反比例函数. 评析:(1)判断两种量是否成反比例关系时,通常写出这两种量的关系式.然后化简,再对照反比例函数式的特征进行解答.(2)反比例函数式y =kx (k 为常数,k ≠0)还可以写成y =kx -1或xy =k (k 为常数,k ≠0).例2. 已知y 是x 的反比例函数,且当x =3时,y 的值是-5.(1)求y 与x 的关系式.(2)求当x =-5时,y 的值.分析:y 是x 的反比例函数,即x 与y 满足y =kx 这个关系式,且当x =3时,y 的值是-5,将这两个数值代入即可求出k 的值.解:(1)设y =k x (k ≠0),把x =3,y =-5代入得,-5=k3.解之得,k =-15,所以,解析式为y =-15x.(2)把x =-5代入,得y =-15-5=3.所以,当x =-5时,y 的值是3.评析:待定系数法求反比例函数解析式的步骤是:(1)设出函数解析式的一般形式为y =kx(k ≠0).(2)把对应的x 与y 的值代入,得到一个关于k 的方程.(3)解方程,求出待定系数k 的值.(4)代入解析式即可得到要求的解析式.例3. (1)已知反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,则该函数关系式是__________.(2)已知反比例函数y =1-3mx 的图象上有两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是__________.分析:(1)因为反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,所以有⎩⎪⎨⎪⎧a -2<0a 2-5=-1 解得⎩⎪⎨⎪⎧a <2a 2=4 即⎩⎪⎨⎪⎧a <2a =±2 .所以a =-2,当a =-2时,函数关系式为y =-4x.(2)反比例函数的图象有两种情况:当1-3m >0时,如图(1)所示,此时y 1<y 2;当1-3m <0时,如图(2)所示,此时y 1>y 2;故可得1-3m >0,即m <13.(1)(2)解:(1)y =-4x (2)m <13评析:(1)对于y =kx (k 为常数,k ≠0)来说,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.所以在此题中,应该有a -2<0.(2)反比例函数y =kx ,当k <0时,在每个象限内,y 随x 的增大而增大,但并不是说反比例函数的整个图象是从左往右上升的,因此一定注意,“在每个象限内”这个条件.例4. (1)(2008年上海)若反比例函数y =k x (k <0)的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m __________n (选择填“>”、“=”、“<”).(2)函数y =-ax +a 与y =-ax(a ≠0)在同一坐标系中的图象可能是( )分析:(1)由k <0知函数图象在二、四象限,且y 随x 的增大而增大,又图象过点P (2,m )、Q (1,n ),2>1,则m >n .(2)由函数图象判断-a 的正负,看是否一致,可以发现函数y =-ax +a 中,当x =1时,y =0,即直线过定点(1,0),所以可排除B 和D .在A 中,根据直线的图象可知-a <0,根据双曲线的图象可知-a <0,它们是一致的.在C中,根据直线的图象可知-a >0,根据双曲线的图象可知-a <0,它们是不一致的,应排除.解:(1)>(2)A例5. 点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y =1x 于点A ,连接OA .(1)如图(1)所示,当点P 在x 轴的正方向上运动时,R t △AOP 的面积大小是否变化?若不变,请求出R t △AOP 的面积;若改变,试说明理由.(2)如图(2)所示,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线DB 交双曲线y =1x 于点B ,连接BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是S 1__________S 2.(选填“>”“<”或“=”)解:(1)设A 点坐标为(x ,y ),则x >0,y >0.S △AOP =12·OP ·AP =12·x ·y =12×1=12.所以当点P 在x 轴的正方向移动时,R t △AOP 的面积不发生变化.(2)由(1)的结果可知S △AOP =S △BOD ,而梯形BCPD 的面积小于S △BOD ,所以有S △AOP >S 梯形BCPD ,即S 1>S 2.评析:从双曲线y =kx (k ≠0)上任一点向x 轴作垂线.则该点垂足及坐标原点构成的三角形面积都相等,其值为12︱k ︱.【方法总结】1. 反比例函数的图象是双曲线,双曲线所在的象限由比例系数k 来决定,当k >0时,双曲线在第一、三象限;当k <0时,双曲线在第二、四象限.2. 若两个变量的积是一个不为零的常数,则这两个变量成反比例.3. 求函数关系式时,一般用待定系数法.4. 在记忆反比例函数图象的性质时,要与正比例函数的性质相对照,不要混淆.5. 在反比例函数y =kx(k ≠0)的图象上任取一点向x 轴作垂线,则由垂足、原点及该点构成的三角形的面积不变,其值为12︱k ︱.【模拟试题】(答题时间:45分钟)一. 选择题1. 下列函数表达式中,是反比例函数的是( )A .y =x -1B .y =1x -1C .y =x2D .xy =-22. 一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A .正比例函数关系B .反比例函数关系C .一次函数关系D .不能确定3. 下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y =1xB .y =-1xC .y =2xD .y =-2x4. 已知(3,-1)是曲线y =kx(k ≠0)上一点,则下列各点中不在该图像上的点是( )A .(13,-9)B .(3,1)C .(-1,3)D .(6,-12)5. 如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数y =1x 的图象上,那么( )A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0*6. 若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间的函数关系的图象大致是( )BC D7. 已知反比例函数y =2x,下列结论中,不正确的是( )A. 图象必经过点(1,2)B. y 随x 的增大而减小C. 图象在第一、三象限内D. 若x >1,则y <28. 反比例函数y =kx (k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定二. 填空题1. 反比例函数y =kx 的图像经过点(2,-1),则k 的值为__________.2. 反比例函数y =15x 中,k =__________.3. 如果y =1x2n -5是反比例函数,则n =__________.4. 反比例函数y =kx的图象经过点(2,3),则这个反比例函数的解析式为_______________.5. 已知反比例函数y =kx 的图象分布在第二、四象限,则一次函数y =kx +b 中,y 随x 的增大而________(填“增大”、“减小”、“不变”).*6. 如图,双曲线y =kx 与直线y =mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A点坐标为__________.**7. 双曲线y =8x与直线y =2x 的交点坐标为__________.三. 解答题1. 指出下列式子哪些是反比例函数解析式?并指出x 的取值.(1)y =x 5 (2)y =-23x (3)y =13x 2 (4)y =3x2. 已知反比例函数y = kx 的图象与一次函数y =3x +m 的图象相交于点(1,5).求这两个函数的解析式;3.x 和y 的一些值:(1)写出y 与x 的函数关系式;(2)根据求出的函数关系式完成上表.*4. 已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上,(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.**5. 如图所示,R t △ABO 的顶点A 是双曲线y =kx与直线y =-x +(k +1)在第四象限的交点,AB ⊥x 轴于B ,且S △ABO =32.求这两个函数的表达式;【试题答案】一. 选择题1. D2. B3. B4. B5. D6. B7. B8. B二. 填空题1. -22. 153. 34. y =6x 5. 减小 6. (2,3) 7. (2,4)和(-2,-4)三. 解答题1. (2)和(4)是反比例函数,其取值范围都是x ≠0.2. y =5x,y =3x +23. (1)y =20x(2)如下表所示:4. (1)-43(2)43<y <45. y =-3x ,y =-x -2。
反比例函数的图像与性质一、反比例函数的概念:形如(0)ky k x=≠的函数,叫做反比例函数.其中x 是自变量,y 是函数 ,k 叫做比例系数. 【注】1、自变量x 的取值范围是不等于0的一切实数,y 的取值范围也是不等于0的一切实数.2、在反比例函数ky x=(k≠0)的左边是函数y ,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如1y x =,312y x =等都是反比例函数,但21y x =+就不是关于x 的反比例函数. 3、反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y =kx -1或xy =k 的形式.4、反比例函数中,两个变量成反比例关系. 二、反比例函数的图形与性质与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.,b )在双曲线的一支上,则(),a b --在双曲线的即过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k |.所以已知反比例函数可求矩形面积,反之,已知矩形面积可求反比例函数.【规律方法小结】正比例函数与反比例函数的区别与联系.【练】1、下列函数中,哪些是反比例函数?(1)31y x =-;(2)22y x =;(3)1y x =;(4)23x y =;(5)3y x =; (6)23y x =-;(7)12y x -=;(8)41y x =+;2、已知函数()231m m y m x +-=-中,y 是x 的反比例函数,求当3x =时,y 的值.反比例函数的图像与性质专项练习解答题1. 若变量y 与x 成正比例变量x 与z 成反比例,则 ( )A.y 与z 成反比例函数关系B.y 与z 成正比例函数关系C.y 与z 2成正比例函数关系D.y 与z 2成反比例函数关系2. 点P (1,3)在反比例函数ky x=(k≠0)的图象上,则k 的值是) A.13 B.3 C. 13- D.-3 3. 在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .24. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC∥x 轴,AC ∥y 轴,△ABC 的面积为S ,则( )A. S=2B. S=4C. 2<S<4D. S>45. 在函数22a y x--=(a 为常数)的图象上有三点()()()112233,,,,,x y x y x y ,且1230x x x <<<,则123,,y y y 的大小关系是 。
反比例函数性质
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或y=k·x^(-1)。
反比例函数性质
1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.反比例函数图像会无限接近于坐标轴但不相交(坐标轴是反比例函数图像的渐近线)
4.∣k∣越大,抛物线开口越大;∣k∣越小,抛物线开口越小。
反比例函数
5. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|.
6.反比例函数的图象是双曲线,有两支,既是轴对称图形,对称轴是y=x或y=-x,又是中心对称图形,对称中心是坐标原点.
7.反比例函数图像中,|k|的值越大,图像越远离坐标轴.。
反比例函数图像与性质知识点总结一、反比例函数公式口诀反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。
二、反比例函数图象当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交。
图象画法1)在平面直角坐标系中标出点(一般标5个点,称为5点作图法)。
2)用平滑的曲线连接点。
当K>0时,在图象所在的每一象限内,Y随X的增大而减小。
当K<0时,在图象所在的每一象限内,Y随X的增大而增大。
当两个数相等时那么曲线呈弯月型。
k的意义及应用过反比例函数y=k/x(k≠0)图象上任意一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积为|k|。
过反比例函数图象一点,作任一坐标轴的垂线,并连接原点,围成的三角形的面积为|k|/2。
研究函数问题要透视函数的.本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积为|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
这个常数是k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
三、反比例函数性质单调性当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
相交性因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例。
形如y=k/x(k为常数,k≠0,x≠0)的函数就叫做反比例函数。
公式:xy=k ,y=k1/x ,y=k/x反比例函数的图像既是轴对称图形,又是中心对称图形。
画出Y=12/X的函数图像根据函数图像研究函数的性质
1.反比例函数 的图象经过点(-1, 2),那么这个反比例函数的解析式为 ,图象在第 象限,它的图象关于 成中心对称. 2.反比例函数 的图象与正比例函数 的图象交于点A (1,m ),则m = ,反比例函数的解析式为 ,这两个图象的另一个交点坐标是 . (0)k y k x =≠(0)k y k x =≠2y x
=。
反比例函数的图像与性质教案教案标题:反比例函数的图像与性质教学目标:1. 理解反比例函数的定义及其特点;2. 掌握绘制反比例函数图像的方法;3. 理解反比例函数图像的性质。
教学准备:1. 教师:准备反比例函数的定义、性质和图像的讲解材料;2. 学生:准备笔、纸和计算器。
教学过程:导入(5分钟):1. 引入反比例函数的概念,与学生一起回顾比例函数的定义及其性质;2. 提问:你们对反比例函数有什么了解?它与比例函数有何不同?讲解(15分钟):1. 讲解反比例函数的定义:y = k/x,其中k为常数且不等于0;2. 解释反比例函数的性质:当x增大时,y减小;当x减小时,y增大;3. 通过实例演示如何计算反比例函数的值,并讨论k的正负对函数图像的影响;4. 讲解反比例函数图像的特点:曲线经过第一象限的原点,且与坐标轴无交点。
练习(15分钟):1. 学生在纸上绘制反比例函数y = 3/x的图像,并标出至少5个点;2. 学生计算并填写表格:x取1、2、3、4、5时,对应的y值;3. 学生观察表格数据,并总结反比例函数图像的特点。
拓展(10分钟):1. 引导学生思考:如果反比例函数的定义中的k为负数,图像会有什么变化?2. 学生尝试绘制反比例函数y = -2/x的图像,并与之前的图像进行比较;3. 学生讨论负数k对反比例函数图像的影响,并总结出结论。
归纳(5分钟):1. 教师与学生一起总结反比例函数的图像与性质;2. 学生回答以下问题:反比例函数图像经过哪个象限的原点?与坐标轴是否有交点?作业:1. 学生完成课堂练习的剩余部分,并绘制反比例函数y = -4/x的图像;2. 学生回答书面问题:反比例函数图像的性质与比例函数图像的性质有何不同?评估:1. 教师检查学生在课堂练习中的图像绘制情况;2. 教师评估学生对反比例函数图像与性质的理解程度。
教学延伸:1. 学生可以进一步探索反比例函数的应用,如在实际问题中的应用;2. 学生可以尝试绘制更多不同参数的反比例函数图像,比较它们之间的差异。
反比例函数的图象和性质(No.4)一、知识要点 1、反比例函数(1)定义:一般地,形如xky =(k 为常数,k≠0)的函数. 说明:①自变量x 在分母上,指数为1;②比例系数k ≠0;③自变量x 的取值为一切非零实数,函数值的取值范围是y ≠0;④反比例函数的其他形式:k xy =,1-⋅=x k y . (2)图象:反比例函数的图象是双曲线,也称为双曲线x ky =(k≠0). (3)性质2、待定系数法求反比例函数的解析式——只需图象上一个点的坐标即可求出k 值.3、反比例函数的图象的对称性 (1)中心对称:对称中心是原点;(2)轴对称:对称轴是直线y=x 和直线y=-x.二、基础演练1、如果y 是m 的反比例函数,m 是x 的正比例函数,那么y 是x 的( ) A.反比例函数 B.正比例函数 C.一次函数 D.反比例或正比例函数2、若反比例函数y=(2m -1)22-m x 的图象在第二、四象限,则m 的值是( )A.-1或1B.小于21的任意实数 C.-1 D.1 3、反比例函数xky =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为___________.第3题图 第5题图 第6题图4、若函数||1m xm y -=为反比例函数,则m=___________. 5、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=xk k 122++的图象上.若点A 的坐标为(-2,-2),则k的值为() A .1 B .-3 C .4 D .1或-36、如图是三个反比例函数的图象的分支,其中k 1,k 2,k 3的大小关系是_____________________.7、已知y=y 1+y 2,而y 1与x +1成反比例,y 2与x 2成正比例,并且x=1时,y=2;x=0时,y=2,求y 与x 的函数关系式.8、如图所示,一次函数y=kx+b 的图象与反比例函数y =xm的图象交于M 、N 两点. (1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x 为何值时一次函数的值大于反比例函数的值.二、能力提升9、下列选项中,阴影部分面积最小的是( )A .B .C .D . 10、(1)若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是_____________.(2)直线y=kx (k <0)与双曲线y=x2-交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值为______. 11、如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (3a ,a )是反比例函数y=xk(k >0)的图象上与正方形的一个交点,若图中阴影部分的面积等于9,则这个反比例函数的解析式为_____________.第11题图 第12题图 第13题图12、如图,点A 、B 是函数y=x 与y=x1的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为_________. 13、如图,已知反比例函数)0(>=k xky 的图象经过直角△OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为12,则k 的值为_______________.14、如图,□AOBC 中,对角线交于点E ,双曲线)0(>=k xky 经过A 、E 两点,若□AOBC 的面积为12,则k=_______.第14题图 第15题图 第16题图 第17题图15、如图,在函数)0(8>=x xy 的图象上有点P 1、P 2、P 3…、P n 、P n+1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1=________,S n =______________.(用含n 的代数式表示) 16、如图,双曲线x k y =经过Rt △BOC 斜边上的点A ,且满足32=AB AO ,与BC 交于点D ,S △BOD =21,求k= .17、如图,已知点A 在反比例函数)0(<=x xky 上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k=_______.18、如图,直线2-=kx y (k >0)与双曲线xky =在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,求k 的值.。
第17讲 反比例函数的图象与性质考点·方法·破译1.反比例函数的定义:形如k y x=(或1y kx -=,k ≠0),y 叫做x 的反比例函数. 2.反比例函数的图象特征:反比例函数的图象是双曲线,关于y =x 或y =-x 轴对称,关于原点O 成中心对称,当k >0时,图象的两支分别在第一、三象限,当k <0时,图象的两支分别在第二、四象限,3.反比例函数的性质:当k >0时,在每个象限内,y 随x 增大而减小;当k <0时,在每个象限内,y 随x 增大而增大.经典·考题·赏析【例1】(西宁)已知函数ky x=-中,x >0时,y 随x 增大而增大,则y =kx -k 的大致图象为( )k >0,而一 次A 01.已知反比例函数a y x=(a ≠0)的图象,在每一象限内,y 的值随着x 值增大而减小,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 02.(龙岩)函数y =x +m 与my x=(m ≠0)在同一象限内的图象可以是( 03(2,y 1随着x 其中正确结论的序号是 . 【例2】如图,A 、B 分别是反比例函数10y x =,6y x=图象上的点,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OB 、OA ,OA 交BD于E 点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1= .ABCDABC D【解法指导】在反比例函数kyx=中,k的几何意义为:中122121106()()22222ODE OBEk kS S S S S S∆∆-=+-+=-=-=【变式题组】01.(宁波)如图,正方形ABOC的边长为2,反比例函数kyx=过点A,则k的值是()A.2 B.-2 C.4 D.-402.(兰州)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线3yx=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小03.(牡丹江)如图,点A、B是双曲线3yx=上的点,分经过A、B两点向x轴、y轴作垂线,若S阴影=1,则S1+S2=.04.(河池)如图,A、B是函数2yx=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y 轴,△ABC的面积记为S,则()A.S=2 B.S=4 C.2<S<4 D.S>405.(泰安)如图,双曲线kyx=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为()A.1yx=B.2yx=C.3yx=D.6yx=【例3】(成都)如图,一次函数y=kx+b的图象与反比例函数myx=的图象交于点A(-2,1),B(1,n)两点⑴试确定上述反比例函数和一次函数的表达式;第1题图第2题图第3题图第4题图第5题图⑵求△AOB 的面积.【解法指导】利用割补法求图形面积.解:⑴∵点A (-2,1)在反比例函数my x=的图象上, ∴m =(-2)×1=-2,∴反比例函数的表达式为2y x=-.∵点 B (1,n )也在反比例函数2y x=-图象上,∴n =-2,即B (1,-2)把点A (-2,1)点B (1,-2)代入一次函数y =kx +b 中,得212k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩ ∴一次函数的表达式为y =-x -1. ⑵在y =-x -1中,当y =0时,得x =-1,∴直线y =-x -1与x 轴的交点为C (-1,0),∵线段OC 将△AOB 分成△AOC 和△BOC ,∴1113111212222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=+=.【变式题组】01.(徐州)如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点,直线AB 与y 轴交于点C .⑴求反比例函数和一次函数的关系式; ⑵求△AOC 的面积; ⑶求不等式kx +b mx-<0的解集(直接写出答案)02.已知反比例函数112k y x=的图象与一次函数22y k x b =+的图象交于A 、B 点,A (1,n ),B (12-,-2). ⑴求两函数的解析式;⑵在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,说明理由. ⑶求AOB △S ;⑷若y 1>y 2,求x 的取值范围.03.如图,A 是反比例函数1ky x=(x >0)上一点,AB ⊥x 轴,C 是OB 的中点,一次函数y 2=ax +b 的图象经过点A 、C 两点,并交y 轴为D (0,-2),AOD S ∆=4. ⑴求两函数的解析式;⑵在y 轴右侧,若y 1>y 2时,求x 的取值范围.04.如图,Rt △ABO 的顶点A 是双曲线ky x=与直线y =-x -(k +1)在第二象限的交点,AB ⊥x 轴于B ,32ABO S ∆=. ⑴求这两个函数的解析式; ⑵求A 、C 两点的坐标;⑶若P 是y 轴上一动点,5PAC S ∆=,求点P 的坐标.【例4】(咸宁)两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确的序号都填上)【解法指导】∵A 、B 两点在1y x=的图象上,根 据反比例函数ky x=中k 的几何意义可知12ODB OAC S S ∆∆==,因而①正确;∵1ODB OAC PDOC PAOB S S S S k ∆∆=--=-矩形四边形,当k 不变时,若P 变动,而四边形PAOB 的面积不变.因1x =而是②正确;若设P (t ,k t ),则A (t ,1t),B (,t k k t ),∴PA =11k k t t t --=,PB =t t k -.若PA =PB ,则有1(1)k t k t k--=.∵k ≠1,∴2t k =,∵t >0,t =,∴当P时,有PA =PB ,并不是PA 与PB 始终相等,因而③不正确;当A 为PC 的中点时,OAC OPA OBD S S S ∆∆∆==,OPC ODP S S ∆∆=,∴ODB OPB S S ∆∆=,∴DB =PB ,因而④正确;故填①,②.④.【变式题组】01.(武汉)如图,已知双曲线ky x=(k >0)经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k = . 02.如图,矩形ABCD 对角线BD 中点E 与A 都在反比例函数ky x=的图象上,且3ABCD S =矩形,则k = .03.如图,P 为x 轴正半轴上一点,过点P 作x 轴的垂线,交函数1y x =(x >0)的图象于点A ,交函数4y x=(x >0)的图象于点B ,过点B 作x 轴的平行线,交1y x=(x >0)于点C ,连接AC ,当点P 的坐标为(t ,0)时,△ABC 的面积是否随t 的变化而变化? 04.函数2y x =(x >0)与8y x=(x >0)的图象如图所示,直线x = t (t >0)分别与两个函数图象交于A 、C 两点,经过A 、C 分别作x 轴的平行线,交两个函数图象于B 、D两点,探索线段AB 与CD 的比值是否与t 有关,请说明理由.第1题图第3题图05.如图,梯形AOBC的顶点A、C有反比例函数的图象上,OA∥BC,上底OA在直线y=x上,下底BC交x轴于E(2,0),求四边形AOEC的面积.演练巩固·反馈提高01.(恩施自治州)如图,一次函数y1=x-1与反比例函数22yx=的图象点A(2,1)、B (-1,-2),则使y1>y2的x的取值范围是()A.x>2 B.x>2或-1<x<0C.-1<x<2 D.x>2或x<-102.(常州)若反比例函数1kyx-=的图象在其每个象限内,y随x的增大而减小,则k的值可以是()A.-1 B.3 C.0 D.-303.(荆州)如图,直线l是经过点(1,0)且与y轴平行的直线,Rt△ABC中直角边AC=4,BC=3,将BC边在直线l上滑动,使A、B在函数kyx=的图象上,那么k的值是()A.3 B.6 C.12 D.15 404.(丽水)点P在反比例函数1yx=(x>0)的图象上,且横坐标为2,若将点P先向右第4题图平移两个单位,再向上平移一个单位后所得点为P /,则在第一象限内,经过点P /的反比例函数图象的解析式是( ) A . 5y x =-(x >0) B . 5y x =(x >0) C . 6y x =-(x >0) D . 6y x=(x >0)05.(铁岭)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A (2,1),若y 2>y 1>0,则x 的取值范围在数轴上表示为( )06.(泰安)函数1y x x=+图象如图所示,下列对该函数性质的论断不可能正确的是( ) A .该函数的图象是中心对称图形 B .当x >0时,该函数在x =1时取得上值2C .在每个象限内,y 随x 的增大而减小D . y 的值不可能为1 07.(芜湖)在平面直角坐标系xOy 中,直线y =x 向上平移一个单位长度得到直线l , 直线l与反比例函数ky x=的图象的一个交点为A (a ,2)则k 的值等于 . 08.(广安)如图,在反比例函数4y x=-(x >0)的图象上有三点P 1、P 2、P 3,它们的横坐标依次为1,2,3,分别过这3个点作x 轴、y 轴的垂线,设斩中阴影部分的面积依次为S 1、S 2、S 3,则S 1+S 2+S 3= .09.(十堰)已知函数y =-x +1的图象与x 轴、y 轴分别交于点C 、B ,与双曲线ky x=交于点A 、D ,若AB +CD =BC ,则k 的值为 . 10.(遵义)如图,在平面直角坐标系中,函数ky x=(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,则点B 的坐标为 .11.如图,点P 的坐标为(2,32),过点P 作x 轴的平行线交y 01 2 0 1 2 0 1 2 0 1 2 A B CD y x A (2,1) 0 1 2 1 Y 1 Y 2第5题图B l C1 O yx A 第3题图y x 0 1 -2 -1 第6题图2 y x0 1 2 3 第8题图P 1 P 2 P 3轴于点A,交双曲线kyx=(x>0)于点N,作PM⊥AN,交双曲线于kyx=(x>0)于点M.连接AM,已知PN=4,⑴求k的值;⑵求△APM的面积.12.如图,反比例函数kyx=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标3,D、C 为反比例函数图象上的两点,且AD、BC平行于y轴,⑴直接写出k、m的值;⑵求梯形ABCD的面积.13.如图,已知双曲线kyx=(x>0)经过Rt△OAB斜边的中点D,与直角边AB相交于点C,若△OBC的面积为3,求k的值.14.如图,Rt△ABC的直角边BC在x轴的正半轴上,斜边AC边上的中线BD反向延长交y轴负半轴于E,双曲线kyx=(x>0)的图象经过点A,若BECS∆=8,求k的值.15.如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为42033y x=-+,AC=3,若AB的D在双曲线ayx=(x>0)上,将三角形向左平移,当点B 落在双曲线上时,求三角形平移的距离.16.(荆州)如图,D 为反比例函数ky x=(k <0)图象上一点,过D 作DC ⊥y 轴于C ,DE ⊥x 轴于E ,一次函数y x m =-+与323y x =-+的图象都经过点C ,与x 轴分别交于A 、B 两点,若梯形DCAE 有面积为4,求k 的值.17.(四川广安)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于点A (-1,2)、点B (-4,n )⑴求一次函数和反比例函数的解析式; ⑵求△AOB 的面积.培优升级·奥赛检测01.如图,直线l 与反比例函数m y x =与ny x=(m >n >0)的图象分别交于点A 、B ,且直线l ∥x 轴,连接PA 、PB ,小芳与小丽同学针对△PAB 面积的讨论,有以下两种意见:小芳:点P 在x 轴上移动时,△PAB 的面积总保持不变; 小丽:当直线l 上下平移时,△PAB 的面积总保持不变; 那么,你认为她们的说法中( )A .只有小芳正确B .只有小丽正确C .两人都正确D .两人都不正确02.(南昌市八年级竞赛题)在函数21a y x+=-(a 为常数)的图象上有三点:(-1,y 1),(21,4y -),( 31,2y )则函数值y 1、y 2、y 3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 03.(济南)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y =x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线kyx=(k≠0)与△ABC有交点,则k的取值范围是()A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<404.(第十八届“希望杯”初二)直线l交反比例函数3yx=的图象于点A,交x轴于点B,点A、B与坐标原点O构等边三角形,则直线l的函数解析式为05.(成都)如图,正方形OABC的面积是4,点B在反比例函数kyx=(k>0,x<0)的图象上,若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是.(用含m的代数式表示)06.如图,已知直线12y x=与双曲线kyx=(k>0)交于A点,且点A的横坐标为4,若双曲线kyx=(k>0)上一点B的纵坐标为8,求△AOB的面积.07.(北京)如图,A、B两点在函数myx=(x>0)的图象上,⑴求m的值及直线AB的解析式;⑵如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.08.(温州)如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数myx=在第一象限的图象交于点C(1,6)点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于点F,⑴求m、n的值;⑵求直线AB的函数解析式;⑶求证:△AEC≌△DFB.09.如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数kyx=(k>0,x>0)的图象上,点P(m,n)是函数kyx=(k>0,x>0)的图象上的任意一点,过点P作x轴、y轴的垂线,垂足分别为E、F,并设在矩形OEPF 中和正方形OABC不重合的部分面积为S.⑴求点B的坐标和k的值;⑵当92S=时,求点P的坐标;⑶写出S关于m的函数关系式.。
正比例函数:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k代表斜率)设该正比例函数的解析式为 y=kx(k≠0),将已知点的坐标带入上式得到k,即可求出正比例函数的解析式。
另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。
反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k 为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数性质1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.k>0时,函数为减函数;k<0时,函数为增函数。
定义域为x<0或x>0;值域为R。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点..抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
反比例函数图像与性质教案教案标题:反比例函数图像与性质教案教案目标:1. 了解反比例函数的定义及其性质。
2. 掌握绘制反比例函数图像的方法。
3. 理解反比例函数图像与性质之间的关系。
4. 能够应用反比例函数解决实际问题。
教学步骤:引入活动:1. 利用实际生活中的例子介绍反比例函数的概念,如速度与时间、工人数量与完成任务所需时间等。
2. 引导学生思考反比例函数的特点,如一个变量的增大导致另一个变量的减小,两个变量的乘积始终保持不变等。
知识讲解:3. 介绍反比例函数的定义:当两个变量x和y满足xy=k(k为常数)时,称y为x的反比例函数。
4. 解释反比例函数的性质:a. 当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
b. 反比例函数的图像通常是一个双曲线,以原点为对称中心。
c. 反比例函数的图像在第一、第三象限上。
d. 反比例函数的图像是渐近线y=0和x=0。
图像绘制:5. 指导学生绘制反比例函数的图像:a. 给定一个常数k,列出一组x和y的值,计算xy=k。
b. 绘制坐标系,并标出坐标轴和原点。
c. 根据计算得到的x和y的值,绘制点,并将它们连成一条曲线。
图像性质探究:6. 引导学生观察反比例函数图像的性质:a. 观察当x趋近于0时,y的变化情况。
b. 观察当x趋近于无穷大时,y的变化情况。
c. 观察反比例函数图像与x轴和y轴的关系。
d. 讨论反比例函数图像的对称性和渐近线。
应用实例:7. 提供一些实际问题,要求学生应用反比例函数解决问题,如速度与时间、工人数量与完成任务所需时间等。
总结和拓展:8. 总结反比例函数的定义和性质。
9. 引导学生思考反比例函数的应用领域,如经济学、物理学等。
10. 鼓励学生进一步探究反比例函数与其他数学概念的关系,如直线函数、二次函数等。
教学评估:11. 给学生几道练习题,检验他们对反比例函数图像与性质的理解和应用能力。
12. 针对学生的答题情况进行评估和反馈,及时纠正错误并加强巩固。
反比例函数定义
一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。
k大于0时,图像在一、三象限。
k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。
反比例函数图像及性质
反比例函数图像:
1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或
第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每
一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。
反比例函数性质:
1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;
当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为
增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与
x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与
坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x
(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B
两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则
n^2+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为
|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.[对称性]反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也
是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。
反比例函数知识点汇总
若k为常数,则函数y=k/x就是反比例函数,自变量和自变量的函数分别是x和y,又因为反比例函数式本身是一个分数,所以x可以是任意不等于0的实数。
同时,函数式有时候也写成y=k·x^(-1)或者k=xy.
1、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=k\x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
2、函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=k\x(k为常数(k≠0),x不等于0)
3、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。