反比例函数的性质
- 格式:docx
- 大小:58.98 KB
- 文档页数:13
实际生活中的反比例函数
实际生活中的反比例函数
主要内容:
(一)反比例函数的性质:
反比例函数(k 是常数,)
当时,图象的两个分支分别位于第一、三象限。
在每一个象限内,y 的值随x 值的增大而减小。
当时,图象的两个分支分别位于第二、四象限。
在每一个象限内,y 的值随x 值的增大而增大。
(二)能利用反比例函数及其性质解决实际问题,解释一些生活中的现象,体会数学的价值。
比如:使劲踩气球时,气球为什幺会爆炸?
因为在温度不变的情况下,气球内气体的压强p(Pa)与它的体积V
(m3)的乘积是一个常数k。
即pV=k(k 为常数,k>0)
在温度不变的情况下,气球内气体的压强p 是气球体积V 的反比例函数,即。
根据反比例函数的性质
当k>0 时,p 随V 的减小而增大。
如果用力踩气球,气球的体积会变小,压强会变大。
当压强大到一定程度时,气球便会爆炸。
【典型例题】
例1. 某一电路中,保持电压U 不变,电流I(安培)与电阻R(欧姆)之。
反比例函数图象的特征及性质: 反比例函数x k y =(k ≠0)的图象是由两个分支组成的曲线。
当0>k时,图象在一、三象限,在每一象限内,y 随x 的增大而减小;当0<k 时,图象在二、四象限,在每一象限内 ,y 随x 的增大而增大。
反比例函数xk y =(k ≠0)的图象关于直角坐标系的原点成中心对称。
例1.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?1.已知反比例函数x ky -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与x ay -=(a ≠0)在同一坐标系中的图象可能是( )1.若函数x m y )12(-=与xm y -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是 3. 已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式例2.(补充)如图,过反比例函数xy =(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定3.在平面直角坐标系内,过反比例函数xk y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为4.5.。
反比例函数性质
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。
而y=k/x有时也被写成xy=k或y=k·x^(-1)。
反比例函数性质
1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.反比例函数图像会无限接近于坐标轴但不相交(坐标轴是反比例函数图像的渐近线)
4.∣k∣越大,抛物线开口越大;∣k∣越小,抛物线开口越小。
反比例函数
5. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|.
6.反比例函数的图象是双曲线,有两支,既是轴对称图形,对称轴是y=x或y=-x,又是中心对称图形,对称中心是坐标原点.
7.反比例函数图像中,|k|的值越大,图像越远离坐标轴.。
反比例函数的概念及基本性质教学目标掌握反比例函数的概念、性质、图象,熟悉反比例函数与一次函数的关系 重难点分析重点:1、反比例函数的概念; 2、反比例函数的图形特征。
难点:1、求反比例函数的解析式; 2、根据图形特征比较大小。
知识点梳理1、反比例函数的概念:一般地,如果两个变量x ,y 之间的关系可以表示成xk y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数。
一般形式:xk y = (k 为常数,)注意:(1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k(也叫做比例系数k),分母中含有自变量x ,且x 的指数是1,若写成1-=kx y 。
则x 的指数是-1。
(2)比例系数是反比例函数定义的一个重要组成部分。
(3)自变量x 的取值范围是的一切实数。
(4)函数y 的取值范围也是一切非零实数。
2、待定系数法求反比例函数的解析式。
3、反比例函数图象(双曲线)的画法:(1)列表;(2)描点;(3)连线。
4、反比例函数的性质:(1)当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小;(2)当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升.也就是说,在每个象限内,随的增大而增大。
知识点1:反比例函数的概念【例1】判断下列说法是否正确1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 【 】 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 【 】 3.如果一个函数不是正比例函数,就是反比例函数 【 】 4.y 与2x 成反比例时,y 与x 并不成反比例 【 】 5.y 与x 2成反比例时,y 与x 也成反比例 【 】 6.已知y 与x 成反比例,又知当2=x 时,3=y ,则y 与x 的函数关系式是6xy = 【 】 【随堂练习】1、已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________。
反比例函数的图像和性质课件反比例函数是数学中的一种重要函数类型,它的图像和性质在数学学习中占据着重要的地位。
本文将从图像和性质两个方面来探讨反比例函数的特点和应用。
一、反比例函数的图像反比例函数的图像呈现出一种特殊的形状,即一条经过原点的斜线。
具体来说,反比例函数的图像是一条从左上方向右下方倾斜的直线。
这是因为反比例函数的定义域为实数集,而值域为除了0以外的实数集,因此函数的图像必然不会经过y轴上的任何点。
通过观察反比例函数的图像,我们可以发现,随着自变量的增大,函数的值会逐渐减小。
这是因为反比例函数的定义中包含有除法运算,而除法运算会使得结果随着被除数的增大而减小。
因此,反比例函数的图像呈现出一种渐近线的特点,即当自变量趋近于正无穷大时,函数的值趋近于0。
二、反比例函数的性质除了图像的特点之外,反比例函数还具有一些重要的性质。
首先,反比例函数的定义域为实数集,但值域为除了0以外的实数集。
这是因为在反比例函数中,除数不能为0,否则会导致无意义的结果。
因此,在计算反比例函数的值时,我们需要注意避免除以0的情况。
其次,反比例函数的导数为常数。
这是因为反比例函数的定义可以表示为y=k/x的形式,其中k为常数。
对该函数进行求导,我们可以得到dy/dx=-k/x^2。
可以看出,反比例函数的导数与自变量x无关,只与常数k有关。
这也意味着反比例函数的斜率在整个定义域上保持不变。
另外,反比例函数还具有一个重要的性质,即函数值的乘积为常数。
具体来说,对于反比例函数y=k/x,当x1和x2为定义域中的两个不同的实数时,有y1*y2=k。
这个性质在实际问题中有着广泛的应用,例如在电路中,电阻和电流的关系就符合反比例函数的性质。
三、反比例函数的应用反比例函数在实际问题中有着广泛的应用。
例如,在物理学中,牛顿第二定律中描述了物体的加速度与施加在物体上的力成反比的关系。
根据牛顿第二定律的表达式F=ma,我们可以得到物体的加速度a与作用力F的关系为a=k/F,其中k为常数。
数学反比例函数的图象及性质知识点归纳
数学反比例函数的图象及性质知识点归纳
店铺您整理了数学反比例函数的图象及性质知识点归纳:反比例函数的图象及性质,希望帮助您提供多想法。
和店铺一起期待学期的学习吧,加油哦!
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的'两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;
(2)画反比例函数图象要注意自变量的取值范围是k≠0,因此不能把两个分支连接起来。
k≠0
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y轴的变化趋势。
反比例函数的性质:
y=k/x(k≠0)的变形形式为xy=k(常数)所以:
(1)其图象的位置是:
当k﹥0时,x、y同号,图象在第一、三象限;
当k﹤0时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y=k/x(k≠0)的图象上,则点(—m,—n)也在此图象上,故反比例函数的图象关于原点对称。
(3)当k﹥0时,在每个象限内,y随x的增大而减小;
当k﹤0时,在每个象限内,y随x的增大而增大;
【数学反比例函数的图象及性质知识点归纳】。
第17讲 反比例函数的图象与性质考点·方法·破译1.反比例函数的定义:形如k y x=(或1y kx -=,k ≠0),y 叫做x 的反比例函数. 2.反比例函数的图象特征:反比例函数的图象是双曲线,关于y =x 或y =-x 轴对称,关于原点O 成中心对称,当k >0时,图象的两支分别在第一、三象限,当k <0时,图象的两支分别在第二、四象限,3.反比例函数的性质:当k >0时,在每个象限内,y 随x 增大而减小;当k <0时,在每个象限内,y 随x 增大而增大.经典·考题·赏析【例1】(西宁)已知函数ky x=-中,x >0时,y 随x 增大而增大,则y =kx -k 的大致图象为( )k >0,而一 次A 01.已知反比例函数a y x=(a ≠0)的图象,在每一象限内,y 的值随着x 值增大而减小,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 02.(龙岩)函数y =x +m 与my x=(m ≠0)在同一象限内的图象可以是( 03(2,y 1随着x 其中正确结论的序号是 . 【例2】如图,A 、B 分别是反比例函数10y x =,6y x=图象上的点,过点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OB 、OA ,OA 交BD于E 点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1= .ABCDABC D【解法指导】在反比例函数kyx=中,k的几何意义为:中122121106()()22222ODE OBEk kS S S S S S∆∆-=+-+=-=-=【变式题组】01.(宁波)如图,正方形ABOC的边长为2,反比例函数kyx=过点A,则k的值是()A.2 B.-2 C.4 D.-402.(兰州)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线3yx=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小03.(牡丹江)如图,点A、B是双曲线3yx=上的点,分经过A、B两点向x轴、y轴作垂线,若S阴影=1,则S1+S2=.04.(河池)如图,A、B是函数2yx=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y 轴,△ABC的面积记为S,则()A.S=2 B.S=4 C.2<S<4 D.S>405.(泰安)如图,双曲线kyx=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为()A.1yx=B.2yx=C.3yx=D.6yx=【例3】(成都)如图,一次函数y=kx+b的图象与反比例函数myx=的图象交于点A(-2,1),B(1,n)两点⑴试确定上述反比例函数和一次函数的表达式;第1题图第2题图第3题图第4题图第5题图⑵求△AOB 的面积.【解法指导】利用割补法求图形面积.解:⑴∵点A (-2,1)在反比例函数my x=的图象上, ∴m =(-2)×1=-2,∴反比例函数的表达式为2y x=-.∵点 B (1,n )也在反比例函数2y x=-图象上,∴n =-2,即B (1,-2)把点A (-2,1)点B (1,-2)代入一次函数y =kx +b 中,得212k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩ ∴一次函数的表达式为y =-x -1. ⑵在y =-x -1中,当y =0时,得x =-1,∴直线y =-x -1与x 轴的交点为C (-1,0),∵线段OC 将△AOB 分成△AOC 和△BOC ,∴1113111212222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=+=.【变式题组】01.(徐州)如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点,直线AB 与y 轴交于点C .⑴求反比例函数和一次函数的关系式; ⑵求△AOC 的面积; ⑶求不等式kx +b mx-<0的解集(直接写出答案)02.已知反比例函数112k y x=的图象与一次函数22y k x b =+的图象交于A 、B 点,A (1,n ),B (12-,-2). ⑴求两函数的解析式;⑵在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,说明理由. ⑶求AOB △S ;⑷若y 1>y 2,求x 的取值范围.03.如图,A 是反比例函数1ky x=(x >0)上一点,AB ⊥x 轴,C 是OB 的中点,一次函数y 2=ax +b 的图象经过点A 、C 两点,并交y 轴为D (0,-2),AOD S ∆=4. ⑴求两函数的解析式;⑵在y 轴右侧,若y 1>y 2时,求x 的取值范围.04.如图,Rt △ABO 的顶点A 是双曲线ky x=与直线y =-x -(k +1)在第二象限的交点,AB ⊥x 轴于B ,32ABO S ∆=. ⑴求这两个函数的解析式; ⑵求A 、C 两点的坐标;⑶若P 是y 轴上一动点,5PAC S ∆=,求点P 的坐标.【例4】(咸宁)两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确的序号都填上)【解法指导】∵A 、B 两点在1y x=的图象上,根 据反比例函数ky x=中k 的几何意义可知12ODB OAC S S ∆∆==,因而①正确;∵1ODB OAC PDOC PAOB S S S S k ∆∆=--=-矩形四边形,当k 不变时,若P 变动,而四边形PAOB 的面积不变.因1x =而是②正确;若设P (t ,k t ),则A (t ,1t),B (,t k k t ),∴PA =11k k t t t --=,PB =t t k -.若PA =PB ,则有1(1)k t k t k--=.∵k ≠1,∴2t k =,∵t >0,t =,∴当P时,有PA =PB ,并不是PA 与PB 始终相等,因而③不正确;当A 为PC 的中点时,OAC OPA OBD S S S ∆∆∆==,OPC ODP S S ∆∆=,∴ODB OPB S S ∆∆=,∴DB =PB ,因而④正确;故填①,②.④.【变式题组】01.(武汉)如图,已知双曲线ky x=(k >0)经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k = . 02.如图,矩形ABCD 对角线BD 中点E 与A 都在反比例函数ky x=的图象上,且3ABCD S =矩形,则k = .03.如图,P 为x 轴正半轴上一点,过点P 作x 轴的垂线,交函数1y x =(x >0)的图象于点A ,交函数4y x=(x >0)的图象于点B ,过点B 作x 轴的平行线,交1y x=(x >0)于点C ,连接AC ,当点P 的坐标为(t ,0)时,△ABC 的面积是否随t 的变化而变化? 04.函数2y x =(x >0)与8y x=(x >0)的图象如图所示,直线x = t (t >0)分别与两个函数图象交于A 、C 两点,经过A 、C 分别作x 轴的平行线,交两个函数图象于B 、D两点,探索线段AB 与CD 的比值是否与t 有关,请说明理由.第1题图第3题图05.如图,梯形AOBC的顶点A、C有反比例函数的图象上,OA∥BC,上底OA在直线y=x上,下底BC交x轴于E(2,0),求四边形AOEC的面积.演练巩固·反馈提高01.(恩施自治州)如图,一次函数y1=x-1与反比例函数22yx=的图象点A(2,1)、B (-1,-2),则使y1>y2的x的取值范围是()A.x>2 B.x>2或-1<x<0C.-1<x<2 D.x>2或x<-102.(常州)若反比例函数1kyx-=的图象在其每个象限内,y随x的增大而减小,则k的值可以是()A.-1 B.3 C.0 D.-303.(荆州)如图,直线l是经过点(1,0)且与y轴平行的直线,Rt△ABC中直角边AC=4,BC=3,将BC边在直线l上滑动,使A、B在函数kyx=的图象上,那么k的值是()A.3 B.6 C.12 D.15 404.(丽水)点P在反比例函数1yx=(x>0)的图象上,且横坐标为2,若将点P先向右第4题图平移两个单位,再向上平移一个单位后所得点为P /,则在第一象限内,经过点P /的反比例函数图象的解析式是( ) A . 5y x =-(x >0) B . 5y x =(x >0) C . 6y x =-(x >0) D . 6y x=(x >0)05.(铁岭)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A (2,1),若y 2>y 1>0,则x 的取值范围在数轴上表示为( )06.(泰安)函数1y x x=+图象如图所示,下列对该函数性质的论断不可能正确的是( ) A .该函数的图象是中心对称图形 B .当x >0时,该函数在x =1时取得上值2C .在每个象限内,y 随x 的增大而减小D . y 的值不可能为1 07.(芜湖)在平面直角坐标系xOy 中,直线y =x 向上平移一个单位长度得到直线l , 直线l与反比例函数ky x=的图象的一个交点为A (a ,2)则k 的值等于 . 08.(广安)如图,在反比例函数4y x=-(x >0)的图象上有三点P 1、P 2、P 3,它们的横坐标依次为1,2,3,分别过这3个点作x 轴、y 轴的垂线,设斩中阴影部分的面积依次为S 1、S 2、S 3,则S 1+S 2+S 3= .09.(十堰)已知函数y =-x +1的图象与x 轴、y 轴分别交于点C 、B ,与双曲线ky x=交于点A 、D ,若AB +CD =BC ,则k 的值为 . 10.(遵义)如图,在平面直角坐标系中,函数ky x=(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,则点B 的坐标为 .11.如图,点P 的坐标为(2,32),过点P 作x 轴的平行线交y 01 2 0 1 2 0 1 2 0 1 2 A B CD y x A (2,1) 0 1 2 1 Y 1 Y 2第5题图B l C1 O yx A 第3题图y x 0 1 -2 -1 第6题图2 y x0 1 2 3 第8题图P 1 P 2 P 3轴于点A,交双曲线kyx=(x>0)于点N,作PM⊥AN,交双曲线于kyx=(x>0)于点M.连接AM,已知PN=4,⑴求k的值;⑵求△APM的面积.12.如图,反比例函数kyx=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标3,D、C 为反比例函数图象上的两点,且AD、BC平行于y轴,⑴直接写出k、m的值;⑵求梯形ABCD的面积.13.如图,已知双曲线kyx=(x>0)经过Rt△OAB斜边的中点D,与直角边AB相交于点C,若△OBC的面积为3,求k的值.14.如图,Rt△ABC的直角边BC在x轴的正半轴上,斜边AC边上的中线BD反向延长交y轴负半轴于E,双曲线kyx=(x>0)的图象经过点A,若BECS∆=8,求k的值.15.如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为42033y x=-+,AC=3,若AB的D在双曲线ayx=(x>0)上,将三角形向左平移,当点B 落在双曲线上时,求三角形平移的距离.16.(荆州)如图,D 为反比例函数ky x=(k <0)图象上一点,过D 作DC ⊥y 轴于C ,DE ⊥x 轴于E ,一次函数y x m =-+与323y x =-+的图象都经过点C ,与x 轴分别交于A 、B 两点,若梯形DCAE 有面积为4,求k 的值.17.(四川广安)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于点A (-1,2)、点B (-4,n )⑴求一次函数和反比例函数的解析式; ⑵求△AOB 的面积.培优升级·奥赛检测01.如图,直线l 与反比例函数m y x =与ny x=(m >n >0)的图象分别交于点A 、B ,且直线l ∥x 轴,连接PA 、PB ,小芳与小丽同学针对△PAB 面积的讨论,有以下两种意见:小芳:点P 在x 轴上移动时,△PAB 的面积总保持不变; 小丽:当直线l 上下平移时,△PAB 的面积总保持不变; 那么,你认为她们的说法中( )A .只有小芳正确B .只有小丽正确C .两人都正确D .两人都不正确02.(南昌市八年级竞赛题)在函数21a y x+=-(a 为常数)的图象上有三点:(-1,y 1),(21,4y -),( 31,2y )则函数值y 1、y 2、y 3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 03.(济南)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y =x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线kyx=(k≠0)与△ABC有交点,则k的取值范围是()A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<404.(第十八届“希望杯”初二)直线l交反比例函数3yx=的图象于点A,交x轴于点B,点A、B与坐标原点O构等边三角形,则直线l的函数解析式为05.(成都)如图,正方形OABC的面积是4,点B在反比例函数kyx=(k>0,x<0)的图象上,若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S,则当S=m(m为常数,且0<m<4)时,点R的坐标是.(用含m的代数式表示)06.如图,已知直线12y x=与双曲线kyx=(k>0)交于A点,且点A的横坐标为4,若双曲线kyx=(k>0)上一点B的纵坐标为8,求△AOB的面积.07.(北京)如图,A、B两点在函数myx=(x>0)的图象上,⑴求m的值及直线AB的解析式;⑵如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.08.(温州)如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数myx=在第一象限的图象交于点C(1,6)点D(3,n).过点C作CE⊥y轴于E,过点D作DF⊥x轴于点F,⑴求m、n的值;⑵求直线AB的函数解析式;⑶求证:△AEC≌△DFB.09.如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数kyx=(k>0,x>0)的图象上,点P(m,n)是函数kyx=(k>0,x>0)的图象上的任意一点,过点P作x轴、y轴的垂线,垂足分别为E、F,并设在矩形OEPF 中和正方形OABC不重合的部分面积为S.⑴求点B的坐标和k的值;⑵当92S=时,求点P的坐标;⑶写出S关于m的函数关系式.。
反比例函数的概念及图像和性质★反比例函数的概念1.反比例函数:如果两个变量x、y 之间的关系可以表示成y=k x(k•为常数,k ≠0)的形式,那么称y 是x的反比例函数.2.反比例函数解析式的变形:反比例函数y=k x(k ≠0)还可以写成1-=kx y (k ≠0)或k xy =(k ≠0). 注意:(1)k 为常数,k≠0;(2)k x中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数;(4)因变量y的取值范围是y ≠0的一切实数.例1.若函数1322)(+--=m mx m m y 是反比例函数,则m 的值是?【变式训练】1.函数122-++=m m x m y 是反比例函数,求解析式.2.已知函数122)(--+=m m x m m y .(1)若y 是x 的正比例函数,求m 的值;(2)若y 是x 的反比例函数,求m 的值,并写出此时y 与x 的函数关系式.例 2.已知y y y y 121,+=与x 2成正比例,y 2与x 成反比例,且1=x 时,1;3-==x y 时,1=y ,求当21-=x 时y 的值。
【变式训练】已知y y y 21-=,y 1与x 成反比例,y 2与2-x 成正比例,并且当3=x 时,5=y ;当1=x 时,1-=y ,求 y 与x 之间的函数关系式。
例3.在平行四边形ABCD 中,E AD AB ,6,8==为AB 上一动点(不与B A 、重合),设DE x AE ,=的延长线交CB 的延长线于点F ,设y CF =,求y 与x 之间的函数关系,并写出自变量x 的取值范围。
【变式训练】如图,平行四边形ABCD 中,E cm BC cm AB ,1,4==是CD 边上一动点,BC AE 、的延长线交于F 点,设ycm BF xcm DE ==,.求y 与x 之间的函数关系式,并写出自变量x 的取值范围。
A DEB C F★反比例函数图像和性质利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,①当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.4.画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是0≠x ,因此,不能把两个分支连接起来;(3)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势.例1.已知反比例22223-+-+=m m x m m y 的图像的两个分支分布在第二、四象限,求m 的值【变式训练】1.已知反比例函数72)2(---=m xx m y 的图像位于第一、三象限,求m的值。
反比例函数图象及性质【知识点】定义:一般的,如果两个变量x ,y 之间的关系可以表示成(k 为常数,k≠0,x≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
表达式:y*x=-1,y=x^(-1)*k ,y=kx^-1(k 为常数(k≠0),x 不等于0)函数的图像:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.函数的性质:Y 与x 的变化:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y 随x 的增大而减小; 当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y 随x 的增大而增大。
因为在(k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。
面积:在一个反比例函数图像上任取两点,过点分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为|k|, 反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则QOWM 的面积为|k|,则连接该矩形的对角线即连接OM,则RT △OMQ 的面积=½|k|。
对称性:类型一:函数性质,比较大小例1.如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数xy 1=的图象上,那么y 1与y 2间的关系是( ) A. y 2<y 1<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>0 例2.对于函数3x ky x+=(k >0)有以下四个结论: ①这是y 关于x 的反比例函数;②当x >0时,y 的值随着x 的增大而减小; ③函数图象与x 轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是 。
第二十六章反比例函数第一节反比例函数的图像和性质一、课标导航二、核心纲领1.反比例函数⑴定义:一般地,形如kyx=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.注:①自变量x在分母上,指数为1.②比例系数k≠0.③自变量x的取值为一切非零实数,函数值的取值范围是y≠0.④反比例函数的其他形式:xy=k(k≠0)或y=kx-1(k≠0).⑵图像:反比例函数的图像是双曲线,也称双曲线kyx=(k≠0)⑶性质(如下表所示)注:⑴y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件.⑵kyx=(k为常数,k≠0)中自变量x≠0,函数值y≠0,所以双曲线不经过原点,两个分支逐渐靠近坐标轴,但是永远不与坐标轴相交.2.待定系数法求反比例函数的解析式只需图像上一个点的坐标即可求出k.3.反比例函数的图像的对称性⑴中心对称:对称中心是原点.⑵轴对称:对称轴是直线y=x和直线y=—x.4.k的几何意义(如下表所示)5.数学思想⑴数形结合;⑵分类讨论.本节重点讲解:一个定义,一个性质,一个对称性,一个几何意义.三、全能突破基础演练1.如果y 是m 的反比例函数,m 是x 的正比例函数,那么y 是x 的( )A. 反比例函数B. 正比例函数C.一次函数D. 反比例或正比例函数 2.若反比例函数22(21)m y m -=-的图像在第二、四象限,则m 的值是( )A.-1或1B.小于12的任意实数 C.-1 D.不能确定 3.如图26-1-1所示,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图像上.若点A 的坐标为(-2,2)则k 的值为( )A. 1B.-3C.4D.1或-34.若函数1mm y x-=为反比例函数,则m =______.5.三个反比例函数y 1,y 2,y 3的图像的一部分如图26-1-2所示,则k 1,k 2,k 3的大小关系为______.6. 反比例函数2k y x-=的图像一个分支经过第一象限,对于给出的下列说法: ①常数k 的取值范围是k >2;②另一个分支在第三象限;③在函数图像上取点A (a 1,b 1)和点B (a 2,b 2),当a 1>a 2时,则b 1<b 2;④在函数图像的某一分支上取点A (a 1,b 1)和点B (a 2,b 2),当a 1>a 2时,则b 1<b 2; ⑤函数的图像是中心对称图形但不是轴对称图形. ⑥一元二次方程x 2—(2k —1)x +k 2—1=0无实数根. 其中正确的是______(在横线上填出正确的序号)7.已知y =y 1+y 2,而y 1与x +1成反比例,y 2与x 2成正比例,并且x =1时,y =2;x =0时,y =2. 求y 与x 的函数关系式.3y图26-1-18.如图26-1-3所示,定义:若双曲线kyx=(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线kyx=(k>0)的对径.⑴求双曲线1yx=的对径;⑵若双曲线kyx=(k>0)的对径为k的值;⑶仿照上述定义,定义双曲线kyx=(k<0)的对径.能力提升9.已知二次函数y=ax2+bx+c的图像如图26-1-4所示,那么一次函数y=bx+c和反比例函数ayx=在同一平面直角坐标系中的图像大致是()10.下列选项中,阴影部分面积最小的是()BACD11.根据图26-1-5(a )所示的程序,得到了y 与x 的函数图像如图26-1-5(b ),过点M 作PQ ∥x 轴交图像于点P 、Q ,连接OP 、OQ .则以下结论:①x <0时,2y x=;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ =2PM ;⑤∠POQ 可以等于90°. 其中正确的结论是( )A.①②④B.②④⑤C.③④⑤D.②③⑤12.⑴正比例函数y =k 1x (k 1≠0)和反比例函数2k y x=(k 2≠0)的一个交点为(1,-2),则另一个交点为______.(2)直线y=ax (a )0)与双曲线y=x3交于A ()11,y x 、B ()22,y x 两点,则122134y x y x -= .13.如图26-1-6所示,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数()0>=k xky 的图像上与正方形的一个交点,若图中阴影部分的面积等于9,则这个反比例函数的解析式为 .(a )(b )图26-1-5A14. 如图26-1-7所示,点A 、B 是函数y=x 与y=x1的图像的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ABCD 的面积为 .15. 如图26-1-8所示,已知双曲线()0>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若△OBC 的面积为6,则k= .16. 如图26-1-9所示,正方形OABC 的面积是4,点B 在反比例函数()0,0>>=x k xky 的图像上.若点R 是该反比例函数图像上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S=m (m 为常数,且0<m<4)时,反比例函数解析式为 ,点R 的坐标是 (用含m 的代数式表示).17. 如图26-1-10所示,在平行四边形AOBC 中,对角线交与点E ,双曲线()0>=k xky 经过A 、E 两点,若平行四边形AOBC 的面积为18,则k = .18. 如图26-1-11所示,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (-2,0)作直线l交AO 于D ,交AB 于E ,点E 在某反比例函数图像上,当△ADE 和△DCO 的面积相等时,那么该反比例函数解析式为 . 19.(1)两个反比例函数xy x y 63==、在第一象限内的图像如图26-1-12所示,点321P P P 、、、…、2013P 在反比例函数xy 6=的图像上,它们的横坐标分别是321x x x 、、、…、2013x ,纵坐标分别是1、3、5、…共2013个连续奇数,过点分别作y 轴的平行线与的图像交点依次是()111,y x Q 、()222,y x Q 、()333,y x Q 、…、()201320132013,y x Q ,则2013y = .(2)如图26-1-13所示,在函数()08>=x xy 的图像上有点321P P P 、、、…、n P 、1+n P ,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点321P P P 、、、…、n P 、1+n P 分别作x 轴、y 轴的垂线段,如图所示,将图中阴影部分的面积从左至右依次记为321S S S 、、、…、n S ,则1S ,n S .(用含n 的代数式表示)20.(1)①如图26-1-14(a )所示,一个正方形的一个顶点在函数()01>=x xy 的图像上,则点1P 的坐标是( , ).②如图26-1-14(b )所示,若有两个正方形的顶点1P 、2P 都在函数()01>=x xy 的图像上,则点2P 的坐标是( , ).(2)如图26-1-14(c )所示,若将两个正方形改为两个等腰直角三角形,直角顶点在函数()04>=x xy 的图像上,斜边1OA 、21A A 都在x 轴上, ①求点的坐标;②求点2P 的坐标.(3)如图26-1-14(d )所示,若有两个等边三角形的顶点都在函数()034>=x xy 的图像上,点1A 、1A 在x 轴上,直接写出点2P 的坐标.21.(1)探究:如图26-1-15(a )所示,已知△ABC 和△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)应用:①如图26-1-15(b )所示,点M 、N 在反比例函数()0>=k xky 图像上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E 、F ,试证明:MN ∥EF .②若①中其它条件不变,只改变点M 、N 的位置,如图26-1-15(c )所示,请判断MN 与EF 是否平行,直接写出结论。
反比例函数是一种数学函数,它通常对应于反对比关系,即如果某个量越大,另一个量就越小,反之亦然。
一般地,一个反比例函数形式为y=k/x,其中k是一个未知的常数。
从定义看,即使x为0,y也能被赋以有限的值,它们的变化关系也不同于线性函数的变化关系。
反比例函数的图像为连续递减的弧形,它以y轴为对称轴,反比例函数在图像上表现为从原点(0,0)出发的一条弯曲的曲线,曲线的弧度越来越小,直至无穷远时与x轴垂直,当x=0时,y值可以被给定,这也是为什么反比例函数和线性函数不同的原因。
此外,反比例函数的基本特性还有,点(a,b)处的导数是负值;它仅当x的值小于k的值的时候才有可能产生拐点;可以通过倒数的非零多项式来求反比例函数的函数值;求反比例函数的定积分时,一般使用其定义域上的积分变量将函数值单调映射到[0,1]端点之间,然后再使用不同的奇偶性求对应此定积分。
总之,反比例函数在数学理论中具有重要的地位,它是一种常用的函数形式,也有着与线性函数不同的曲线图形和相应的参数特性。
这提醒我们,在令人兴奋的数学探索之旅中,要秉承科学的态度紧紧依靠量化的思维方式来深入探讨数学物理的规律。
二十六章反比例函数26.1.1反比例函数教学目标知识与技能1.理解并掌握反比例函数定义.2.能判断一个给定的函数是否为反比例函数.3.能根据实际问题中的条件确定反比例函数的解析式及自变量的取值范围.过程与方法1.让学生从实际问题情景中经历探索、分析和建立两个变量之间的反比例函数关系的过程.2.用类比的思想方法,从实际问题中抽象出反比例函数概念,发展学生的观察能力、探究能力及交流总结能力.3.经历探索具体问题中数量关系和变化规律的过程,体会建立函数模型的思想.情感态度与价值观1.通过对一些实际问题的探究,发展学生合理的猜想、推理能力,增强他们学习数学的兴趣.2.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生应用数学的意识.教学重难点【重点】1.理解并掌握反比例函数的定义,掌握反比例函数的一般形式.2.能根据已知条件确定反比例函数的解析式.【难点】经历探索和表示反比例函数关系的过程,体验用反比例函数表示变量之间的关系.教学准备【教师准备】多媒体课件1~7.【学生准备】预习教材P1~3.教学过程新课导入:导入一:【课件1】同一条铁路线上,由于不同车次列车运行时间有长有短,所以它们的平均速度有快有慢.(1)如果速度v一定,那么路程s与时间t是什么关系?(s=vt,是正比例函数)(2)如果时间t一定,那么路程s与速度v又是什么关系呢?(s=vt,是正比例函数)(3)如果路程s一定,那么速度v和时间t又是什么关系呢?【思考】以上关系是函数吗?这个函数是不是我们前边学过的函数?【导入语】问题(1)(2)中的函数是一次函数(正比例函数),(3)中的函数不是前边学过的函数,这类函数就是本章要研究的反比例函数.[设计意图]通过生活中的情景问题,引导学生发现不同于以往学过的新的函数关系,唤起学生对本课时的学习欲望,使学生带着问题进入新课的学习.导入二:【课件2】我们知道,导体中的电流I与导体的电阻R、导体两端的电压U之间满足关系式U=IR,当U=220 V时:(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?[设计意图]从学生身边的生活和已有知识出发,创设情景,目的是让学生感受到生活当中处处有数学,激发学生学习数学的兴趣和愿望,同时也为抽象出反比例函数概念做铺垫.同时,这个事例的引入也有助于学生从学科综合的角度进行学习.导入三:【复习提问】(1)什么是函数?什么是一次函数、二次函数?(2)一次函数、二次函数的学习过程是怎样的?【课件3】出示以往研究函数的基本思路:【师生活动】学生思考回答,教师点拨.[设计意图]通过复习一次函数、二次函数的概念,让学生从已有的知识体系中自然地构建出新知识.回忆学习一次函数、二次函数的研究思路,引导学生用类比的方法学习本章的反比例函数,初步了解本章的基本内容和研究思路,为后续学习做好铺垫.导入新课思路一1.感知反比例函数【出示课件4】(1)京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68×104 km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.教师引导学生针对上面三个事例思考:(1)每个事例中的两个变量是什么?(2)当一个量变化时,另一个量随着怎样变化?(3)有几个值与变化的量相对应?这种变化说明变量之间是什么关系?(4)题目中的等量关系是什么?如果是函数关系,其解析式是什么?(5)所列出的函数关系式有什么特点?[设计意图]通过问题组的形式,引导学生发现这些变量之间的关系是一种函数关系,并且这种函数的解析式不同于以往的一次函数和二次函数,为进一步研究反比例函数做知识准备,同时激发学生学习的欲望,实现了让学生感知反比例函数的目的.【学生活动】独立思考后,小组合作交流,确定三个问题中的变量关系都是函数关系,并列出具体的函数解析式.【参考答案】(1)v=(2)y=(3)S=.2.反比例函数的概念观察前面的三个函数关系式,思考:(1)这三个函数是一次函数或二次函数吗?(2)这三个函数与前边学过的函数有什么不同?你能说出它们的共同特征吗?(3)通过观察,你能归纳出这种函数的一般形式吗?(4)你能给这类函数下一个定义吗?【师生活动】学生思考后,逐一回答所提问题,教师适时启发,共同归纳结论.教师引导学生从两个方面思考:与一次函数和二次函数的解析式对比;给出的三个函数关系式等号右面是整式还是分式;三个函数关系式中的k值有什么特点.【总结(出示课件5)】一般地,形如y=(k为常数,k≠0)的函数,叫做反比例函数,其中x是自变量,y是函数.自变量x的取值范围是不等于0的一切实数.思考:(1)你身边哪些量之间存在着反比例函数关系?(2)在反比例函数y=中,k,x,y可以取任意实数吗?(3)反比例函数y=中,自变量x的指数是1吗?为什么?(4)反比例函数除了这种分式的形式外,还有其他表示方法吗?【师生活动】学生独立思考后,小组交流,学生回答时教师及时点评和引导,师生共同归纳反比例函数概念的有关特点:反比例函数y=等号右边是分式形式.反比例函数中,比例系数k≠0,自变量x≠0,函数值y≠0.反比例函数的三种表示形式:y=,xy=k,y=kx-1.[设计意图]通过学生观察讨论,依据老师设计的问题串,类比已学函数,抽象出函数的本质特征,归纳出反比例函数的特征,学生经历概念的形成过程,从而达到真正理解定义的目的,同时培养学生归纳总结能力.思路二1.认识新的函数——反比例函数【出示课件6】下列五个事例:(1)某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)与宽x(单位:m)有何关系?(2)物理学中电流I、电阻R、电压U之间满足关系式U=IR.当U=220 V时,R与I有何关系?当R=10 Ω时,I与U有何关系?(3)京沪线铁路全程为1463 km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有何关系?(4)用10 m长的篱笆围成矩形的小花园.①如果花园的长为y m,宽为x m,那么y与x有何关系?②如果花园的长为x m,面积为y m2,那么y与x又有何关系?(5)已知北京市的总面积为1.68×104 km2,人均占有面积S(单位:km2/人)与全市总人口n(单位:人)有何关系?教师引导学生针对上面五个事例思考:(1)每个事例中的两个变量是什么?(2)当一个量变化时,另一个量随着怎样变化?这种变化说明变量之间是什么关系?(3)题目中的等量关系是什么?如果是函数关系,其解析式是什么?(4)所列出的函数关系式有什么特点?[设计意图]问题情景既有教材“思考”栏目的问题,又有新增设的跨学科的物理问题,这些事例都要求学生从实际问题中找到两个变量,确定函数解析式.使已学函数和要研究的新函数都呈现在学生面前,引发学生的认识冲突,为形成反比例函数概念、辨析反比例函数做好准备.【总结】经过学生交流研讨,确认五个问题中的变量关系都是函数关系,并列出具体的函数解析式.(1)y=. (2)R=;I=. (3)v=. (4)①y=5-x. ②y=5x-x2. (5)S=.2.反比例函数的概念(1)反比例函数的一般形式【出示课件7】思考下列问题:【问题1】哪些是正比例函数、一次函数、二次函数?【问题2】哪些函数与问题1中的函数不同?能给这类函数下定义吗?【问题3】你能尝试写出类似问题1中这种函数的一般形式吗?【问题4】上述函数中的常数k分别是多少?【问题提示】上述情景中给出七个函数,其中第一、二、三、四个及第七个函数不是以往学习过的函数.通常情况下,我们用y表示函数,用k表示常量,用x表示自变量.这几个特殊的函数学生可以初步总结为y=.(2)理解反比例函数概念【问题1】反比例函数的一般式y=的等号右边是什么式子?(提示:分式,其他的函数都是单项式或多项式)【问题2】反比例函数y=的比例系数k、自变量x取值有什么要求?(提示:都是不能为0的实数)【问题3】反比例函数解析式还可以写成其他形式吗?(提示:两个变量的乘积为定值;自变量x的指数为-1)[设计意图]通过前面的三个问题,观察学生是否能理解反比例函数的意义,是否能用数学语言表达反比例函数的解析式,是否理解自变量的取值范围(实际问题中自变量取值有所不同),是否掌握判断反比例函数的标准和方法.通过学生的观察、思考、合作、交流,反比例函数概念及模型的建立也就会水到渠成.3.例题讲解下列函数:(1)y=;(2)y=;(3)y=;(4)y=;(5)xy=2;(6)y=.其中是反比例函数的是(填序号),它们的比例系数分别是.〔解析〕根据反比例函数概念进行判断,易得(1),(2),(4),(5)是反比例函数,其中k分别为5,0.4,,2.〔答案〕(1)(2)(4)(5)5,0.4,,2若y=(a-2)x|a|-3是反比例函数,则a的值为.【师生活动】学生独立思考后,小组交流答案,教师对学生的答案进行点评,并强调易错点.〔解析〕根据反比例函数概念可得,反比例函数满足两个条件:(1)常数k≠0;(2)自变量x的指数为-1.由题意可得|a|-3=-1,且a-2≠0,解得a=-2.故填-2.[设计意图]通过练习让学生进一步理解和掌握反比例函数的一般形式及特点,特别是忽略考虑k≠0这一易错点.(教材例1)已知y是x的反比例函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式;(2)当x=4时,求y的值.【师生活动】师生共同复习待定系数法求函数解析式,然后学生独立完成,并板书过程,学生之间互相纠正错误答案,教师点评,并归纳待定系数法求函数解析式的一般步骤.〔解析〕类比一次函数、二次函数求解析式的方法——待定系数法,设出函数解析式,将一对x,y的值代入,求出待定系数k.解:(1)设所求函数解析式为y=.因为当x=2时,y=6,所以有6=.解得k=12.因此所求函数解析式为y=.(2)把x=4代入y=,得:y==3.[设计意图]通过复习待定系数法,再次用这一方法求反比例函数解析式,并让学生体会反比例函数解析式中只有一个待定系数,所以代入一组值即可求出函数解析式.同时让学生体会建模思想在数学中的应用,提高学生的归纳能力.[知识拓展](1)反比例函数y=(k≠0)等号右边分式的分母不能是多项式,只能是x 的一次单项式,如y=,y=等都是反比例函数,但y=中,y就不是x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成xy=k(k≠0),y=kx-1(k≠0)的形式.课堂总结1.反比例函数定义:形如y=(k为常数,且k≠0)的函数叫做反比例函数.2.反比例函数满足的条件:(1)函数右边是分式形式;(2)自变量的指数是-1;(3)比例系数不为0.3.反比例函数的三种表示形式:y=(k≠0);xy=k(k≠0);y=kx-1(k≠0).4.反比例函数自变量的取值范围:x≠0.课堂练习1.下列函数中,是反比例函数的是()A.y=2x+1B.y=0.75xC.y=D.xy=1解析:A中函数是一次函数;B中函数是正比例函数;C中函数右边分母不是x的单项式,所以A,B,C都不是反比例函数,只有D符合反比例函数定义.故选D.2.反比例函数y=(m+1)x-1中m的取值范围是()A.m≠1B.m≠-1C.m≠±1D.全体实数解析:在反比例函数y=kx-1中,比例系数k≠0,所以m+1≠0,所以m≠-1.故选B. 3.若函数y=x2m-1为反比例函数,则m的值是.解析:根据反比例函数定义可得2m-1=-1,解得m=0.故填0.4.某蓄水池的排水管每小时排水8 m3,6 h可将满池水全部排空.(1)蓄水池的容积为;(2)若每小时排水用Q(m3)表示,则排水时间t(h)与Q(m3)的函数解析式为.解析:由题意可得等量关系为:单位时间内的排水量×排水时间=总排水量,所以蓄水池的容积为8×6=48(m3),故Qt=48,即t=.答案:(1)48 m3(2)t=5.已知y与3x成反比例,且当x=1时,y=.(1)写出y与x的函数解析式;(2)当x=时,求y的值;(3)当y=时,求x的值.解:(1)设y与x的函数解析式为y=,把x=1,y=代入,得=,所以k=2,所以y与x的函数解析式为y=.(2)当x=时,y=2.(3) 当y=时,=,解得x=.板书设计26.1.1反比例函数思路一1.感知反比例函数2.反比例函数的概念3.例题讲解例1例2例3作业布置一、教材作业【必做题】教材第3页练习第1,2题.【选做题】教材第3页练习第3题.二、课后作业【基础巩固】1.下列函数中,不是反比例函数的是()A.y=-B.y=C.y=D.3xy=22.下列反比例函数中,当x=2时,y的值为-3的是()A.y=B.y=-C.y=-D.y=-3.若y=(a+1)是反比例函数,则a的值为()A.1B.-1C.±1D.任意实数4.若一个矩形的面积为10,则这个矩形的长与宽之间的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.不能确定5.下列函数:①y=2x-1;②y=-;③y=x2+8x-2;④y=;⑤y=;⑥y=.其中y是x的反比例函数的有(填序号).6.若反比例函数y=,当x=-1时,y=2,则k的值是.7.已知y是x的反比例函数,且当x=3时,y=8,那么当x=4时,y=.8.若梯形的下底长为x,上底长为下底长的,高为y,面积为60,则y与x的函数解析式是(不考虑x的取值范围).9.分别写出下列函数的解析式,指出是哪种函数,并确定其自变量的取值范围.(1)在路程为60 km的运动中,速度v(单位:km/h)关于运动时间t(单位:h)的函数关系式;(2)某校要在校园中开辟出一块面积为84 m2的矩形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式;(3)市政府计划建设一项水利工程,工程需要运送的土石总量为106米3,某运输公司承办了该项工程运送土石的任务,运输公司的平均工作量V(单位:米3/天)与完成运送任务所需要的时间t(单位:天)之间的函数关系式.10.已知y与x的反比例函数解析式为y=.(1)请完成下表:(2)求当x=-10时函数y的值;(3)求当y=6时自变量x的值.【能力提升】11.将x=代入反比例函数y=-中,所得函数值记为y1,又将x=y1+1代入原反比例函数中,所得函数值记为y2,再将x=y2+1代入原反比例函数中,所得函数值记为y3,…,如此继续下去,则y2014=.12.已知一个长方体的体积是100 cm3,它的长是y cm,宽是5 cm,高是x cm.(1)写出用高表示长的解析式;(不用写出自变量取值范围)(2)当x=3时,求y的值.【拓展探究】13.已知y=y1+y2,y1与x2成正比例,y2与x成反比例,且当x=1时,y=3;当x=-1时,y=1.求当x=时y的值.【答案与解析】1.C(解析:A,B,D符合反比例函数定义,C函数中的分母不是关于x的单项式,所以不是反比例函数.故选C.)2.B(解析:把x=2分别代入各选项求出y的值,只有B中y的值为-3.故选B.)3.A(解析:根据反比例函数的定义,得a2-2=-1,且a+1≠0,解得a2=1,a≠-1,∴a=1.故选A.)4.B(解析:题目中的等量关系为:长×宽=矩形面积,所以长×宽=10,即长等于10除以宽,所以长与宽是反比例函数关系.故选B.)5.②⑤(解析:①是一次函数,不是反比例函数;③y=x2+8x-2是二次函数,不是反比例函数;④的分母中x的指数是3,不是反比例函数;⑥y=中,a≠0时,是反比例函数,没有此条件则不一定是反比例函数.只有②⑤符合反比例函数定义.故填②⑤.)6.-2(解析:把x=-1,y=2代入可得k=(-1)×2=-2.故填-2.)7.6(解析:设y=,把x=3,y=8代入,得k=24,所以y与x之间的函数解析式为y=,把x=4代入得y=6.故填6.)8.y=(解析:根据梯形的面积公式可得y=60,化简得y=.故填y=.)9.解:(1)v=,是反比例函数,t>0. (2)y=,是反比例函数,x>0. (3)V=,是反比例函数,t>0.10.解:(1)-1-33 1 (2)当x=-10时,y=-. (3)当y=6时,6=,解得x=.11.-(解析:把x=代入得y1=-,则x2=-+1=-,所以y2=2,则x3=2+1=3,所以y3=-,则x4=-+1=,所以y4=-.….观察y1=y4 ,所以三组一循环出现,2014除3余1,所以y2014=y1= -.)12.解:(1)y=. (2)当x=3时,y=.13.解:设y1=k1x2,y2=,则y=y1+y2=k1x2+.把x=1,y=3;x=-1,y=1代入得解得所以y=2x2+.当x=时,y=2×+2=.教学反思本课时精心设计了课程导入环节,顺利地把学生带入课时学习的情景之中,为学好本课时的内容做了很好的铺垫.在教学设计思路上,不是把概念直接交给学生,而是让学生通过比较反比例函数与其他函数区别的基础上得出结论,这样既巩固了先前的知识,又很好地做到了知识的迁移和延伸.依托教材的素材对教材进行了开发,依据教材的情景,设计了对学生具有启发性和引导性的问题,精心设置了教材例题之外的例题,更好地为实现本节课的教学目标服务.在复习一次函数和二次函数等函数知识的时候,给学生的时间较少,部分同学还没有很好地回忆和总结先前的知识,这在一定程度上造成了学生理解知识存在衔接的困难.在讨论问题组的时候,让学生自我学习和交流做得不够深入,老师过早地把问题结论提示给学生,对学生的思维活动没有做到很好的引导.在习题处理环节上,第一个例题可以让学生通过交流合作去完成.因为本课时的学习内容需要联系以往的函数知识,教师应该在课前让学生进行有针对性的复习.降低补充的两个例题的综合程度,把处理的重点放在巩固基础知识上,而不是强调对知识的综合练习.在明确了反比例函数的定义之后,建议学生利用函数解析式把不同的函数特点进行对比,这样更有利于学生对知识的掌握.。