数学实验迭代:分形
- 格式:doc
- 大小:240.55 KB
- 文档页数:13
分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
分形原理及其应用
分形是一种几何图形,它具有自相似的特性,即整体的形状和局部的形状都具
有相似性。
分形原理最早由法国数学家Mandelbrot提出,他认为自然界中的许多
现象都可以用分形来描述。
分形原理不仅在数学领域有着广泛的应用,还在生物学、物理学、经济学等领域都有着重要的意义。
在数学领域,分形可以用来描述自然界中的许多复杂现象,比如云彩的形状、
树叶的脉络、河流的分布等。
利用分形原理,我们可以更好地理解这些现象背后的规律。
而在生物学领域,分形原理也有着广泛的应用。
比如,我们可以利用分形原理来研究植物的生长规律,动物的群体分布等。
在物理学领域,分形可以用来描述许多复杂的物理现象,比如分形几何可以用来描述分形维度,分形维度可以用来描述物体的复杂程度。
除了在基础科学领域有着广泛的应用之外,分形原理还在工程技术领域有着重
要的意义。
比如,在图像处理领域,我们可以利用分形原理来进行图像的压缩和识别。
在信号处理领域,分形原理也可以用来进行信号的分析和处理。
在金融领域,分形原理可以用来描述股票价格的波动规律,从而帮助投资者进行风险管理。
总的来说,分形原理是一种非常有用的数学工具,它不仅可以用来描述自然界
中的复杂现象,还可以在工程技术领域有着广泛的应用。
随着科学技术的不断发展,相信分形原理会有更多的应用场景被发现,为人类的发展带来更多的帮助和便利。
希望本文的介绍能够让读者对分形原理有更深入的了解,并且能够在实际应用
中发挥更大的作用。
分形原理的应用领域还在不断扩大,希望大家能够关注并且深入研究,为人类的发展做出更大的贡献。
实验三迭代与分形一、实验目的与要求1.了解分形几何的基本情况;2.了解通过迭代方式产生分形图的方法;3.了解matlab软件中简单的程序结构;4.掌握matlab软件中plot, fill等函数的基本用法;二、问题描述1.对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。
编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。
2.自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。
三、问题分析1.第一题要求我们利用一个等边三角形然后在三角形的基础上利用理论课上的Koch曲线的画法,产生一朵Koch雪花,由于Koch雪花的产生相当于将三条等长的直线分别产生的Koch曲线按照等边三角形的坐标形式组合起来然后在同一个坐标系中表示出来,这就形成了Koch雪花图案。
四、背景知识介绍1.什么是迭代迭代法是常用的一种数学方法,就是将一种规则反复作用在某个对象上,它可以产生非常复杂的行为。
我们这里介绍图形迭代和函数迭代两种方式。
(1)图形迭代。
给定初始图形F0,以及一个替换规则R,将R反复作用在初始图形F0上,产生一个图形序列:R(F0)=F1,R(F1)=F2,R(F2)=F3,…(2)函数迭代。
给定初始值x0,以及一个函数f(x),将f(x)反复作用在初始值x0上,产生一个数列:f(x)=x1,f(x1)=x2,f(x2)=x3,…2.p lot函数介绍plot是最重要最基本的二维曲线绘图指令,基本功能是画折线和曲线。
基本调用格式如下:(1)plot(Y,LineSpec)。
其中,Y一般是数组;而LineSpec是用来指定线型、色彩等的选项字符串,可省略。
本功能是以数组Y作为竖坐标,以数组元素的下标为横坐标,画出一条折线。
当数组元素很多时,就出现连续曲线的效果。
(2) plot(X,Y)。
其中,X、Y一般是相同长度的数组。
分形理论及其在水处理工程中的应用凝聚和絮凝是混凝过程的两个重要阶段, 絮凝过程的完善程度直接影响后续处理(沉淀和过滤)的处理效果。
但絮凝体结构具有复杂、易碎和不规则的特性,以往对絮凝的研究中由于缺乏适用的研究方法,通常只考虑混凝剂的投入和出水的混凝效果, 而把混凝体系当作一个―黑箱‖, 不做深入研究。
即使考虑微观过程, 也只是将所有的胶粒抽象为球形, 用已有的胶体化学理论及化学动力学理论去加以解释[1],得出的结论与实验中实际观察到的胶体和絮凝体的特性有较大的差别。
尽管有的研究者在理论推导和形成最终的数学表达式时引入了颗粒系数加以修正, 但理论与实验结果仍难以一致。
而分形理论的提出,填补了絮凝体研究方法的空白。
作为一种新兴的絮凝研究手段, ,分形理论启发了研究人员对絮凝体结构、混凝机理和动力学模型作进一步的认识。
1 分形理论的概述1.1 分形理论的产生1975年[2],美籍法国数学家曼德布罗特(B. B. Mandelbrot)提出了一种可以用于描绘和计算粗糙、破碎或不规则客体性质的新方法,并创造了分形(fractal) 一词来描述。
分形是指一类无规则、混乱而复杂, 但其局部与整体有相似性的体系, 自相似性和标度不变性是其重要特征。
体系的形成过程具有随机性,体系的维数可以不是整数而是分数[3]。
它的外表特征一般是极易破碎、无规则和复杂的,而其内部特征则是具有自相似性和自仿射性。
自相似性是分形理论的核心,指局部的形态和整体的形态相似,即把考察对象的部分沿各个方向以相同比例放大后,其形态与整体相同或相似。
自仿射性是指分形的局部与整体虽然不同, 但经过拉伸、压缩等操作后, 两者不仅相似, 而且可以重叠。
分形理论给部分与整体、无序与有序、有限与无限、简单与复杂、确定性与随机性等概念注入了新的内容,使人们能够以新的观念和手段探索这些复杂现象背后的本质联系。
1.2 絮凝体的分形特性絮凝体的成长是一个随机过程, 具有非线性的特征。
分形标度律一、分形标度律的起源分形标度律是一个揭示自然界和社会现象中自相似性和尺度相关性的概念。
它的起源可以追溯到20世纪80年代,当时法国数学家曼德布罗特在研究自然界和艺术中的自相似性时,提出了分形几何的概念。
分形几何描述的是具有非整数维度的几何形状,其中每个部分都以某种方式与整体相似。
这种自相似性和尺度相关性在许多自然现象和社会现象中都有所体现,如云彩的形状、山脉的高度分布、人口的分布、网络的连接等等。
二、分形的基本概念分形是指具有自相似性的几何形状,其每个部分都与整体相似。
这种自相似性可以是数学上的精确相似,也可以是统计上的相似。
分形可以是规则的,也可以是非规则的。
规则分形可以通过简单的数学公式或迭代算法来生成,如谢尔宾斯基三角形、科赫曲线等;而非规则分形则无法通过简单的数学公式来描述,只能通过计算机模拟或统计分析来近似描述。
三、分形标度律的数学表述分形标度律是指在一定条件下,某些量与尺度的对数成正比。
这个规律可以用数学公式来表示:y = c * x^n,其中y是某个量,x是尺度,c和n是常数。
在这个公式中,y与x的对数成正比,因此可以得出结论:这个量具有分形标度律。
分形标度律不仅在自然科学中有广泛的应用,在社会科学中也有广泛的应用,如人口统计学、市场营销、网络分析等等。
四、分形标度律的应用领域1.物理学:在物理学中,分形标度律被广泛应用于描述物质的扩散、凝聚和热传导等过程。
例如,在研究布朗运动时,通过测量不同尺度下颗粒的扩散距离,可以验证分形标度律的存在。
2.生物学:在生物学中,分形标度律被广泛应用于描述生物体的结构和功能。
例如,许多生物体的血管、肺部和消化道等都具有分形结构,这种结构有助于提高生物体的生存能力和适应环境的能力。
此外,在研究物种分布和生态系统的稳定性等方面,分形标度律也具有重要的应用价值。
3.地理学:在地理学中,分形标度律被广泛应用于描述地形地貌、城市规模分布和自然灾害等方面的现象。
实验题目:用迭代法求解方程及线性方程组。
实验问题:函数的迭代是数学研究中的一个非常重要的思想工具。
哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分形和混沌。
同时,迭代在各种数值计算算法以及其他学科领域的诸多算法中处于核心的地位。
首先,我们来探讨利用迭代求解方程的近似解。
实验目的:1. 学会基本Mathematica 语句并用其解决实际问题。
2. 了解Mathematica 系统 。
3. 用Mathematica 解决在求方程解的迭代过程。
1.方程求解给定实数域上光滑的实值函数f(x)以及初值0x 定义数列,,1,0),(1 ==+n x f x n n (1) ,,1,0, =n x n 称为f (x )的一个迭代序列。
给定迭代函数f(x)以及一个初值0x 利用(1)迭代得到数列,,1,0, =n x n 如果数列n x 收敛于一个*x ,则有)(**x f x = (2) 即*x 是方程x=f(x)的解。
由此启发我们用如下的方法球方程g(x)=0的近似解。
将方程g(x)=0改写为等价的方程x=f(x), (3) 然后选取一初值利用(1)做迭代。
迭代数列n x 收敛的极限就是方程g(x)=0的解。
用上述方程求方程的根的一个首要问题是迭代是否收敛?经过试验我们知道,使得迭代序列收敛并尽快收敛到方程g(x)=0的某一解的条件是迭代函数f(x)在解的附近的导数的绝对值近两小。
这启发我们将迭代方程修改成x x f x h x )1()()(λλ-+== (4) 我们需要选取λ使得01)('|)('|=-+=λλx f x h得)('11x f -=λ 于是1)(')()(---=x f xx f x x h特别地,如果f(x)=g(x)+x ,则我们得到迭代公式.,1,0,)(')(1 =-=+n x x n n x g x g n n (5) 2.线性方程组的迭代求解给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++n n nn nn n n b x a x a b x a x a 111111 (6)或写成距阵的形式Ax=b, (7)其中)(ij a A =是n 阶方程,T n x x x ),,(1 = 及T n b b b ),,(1 =均为n 维列向量。
Mandelbrot集以及他的局部放大数学实验报告Mandelbrot集是二维复平面上的分形数集,1980前后发现,堪称人类认识数学存在的一个里程碑。
它是由一个简单复函数f(Z)=Z2+C迭代运算而形成的收敛数集(Z是迭代复变数,C是点位复常数),谁做这样的迭代运算都能得到形态一样的数集,见下图,这便是Mandelbrot集。
分形实在很美,于是读《分形理论与应用》尝试绘制Mandelbrot Set 曼德勃罗集。
naive idea: 空间上的分形和时间上的混沌有相似性。
一个动力方程是时间上的混沌,会收敛到吸引子,根据此画出的动力平面和参数平面是空间上的分形。
Mandelbrot Set1. 复迭代有一个关于z的复映射with 参数c如下:[公式]我们想要知道在参数平面中临界点[公式] 的轨迹是否有界,即对于一个c,根据迭代规则[公式]生成的序列[公式] ,则无界,[公式] 如果序列有界,则[公式]。
另外我们还想要知道在动力平面中[公式] ,不同z0 的值产生的轨迹是否有界,此时[公式] 如果序列有界,[公式] 如果序列无界。
2. Algorithm 逃逸时间算法为了绘制参数平面中的M集,我们需要确定每个c是否属于M 集,这里用到了逃逸时间算法。
逃逸准则对于一个复数[公式] , 模[公式] 。
我们claim:如果对于一个复数序列[公式] 有[公式] 则序列将逃逸到无穷大。
证明当[公式] , 则由[公式] 可知[公式] for [公式][公式]因此,我们得到[公式]那么在k次迭代后,我们得到[公式]序列趋于无穷如果[公式] ,可得[公式][公式] 因为[公式]那么对于任意[公式] , 假设[公式] , 我们有[公式] ,对于[公式]那么根据数学归纳法,我们知道序列趋于无穷。
z需要判断大于2来证明这是个无界序列吗?不用。
逃逸时间算法对于每个复参数平面上的点c,我们生成一个序列Z,怎么判断这个序列是否有界呢?根据逃逸准则,我们规定R为逃逸半径,在[公式] 里,如果[公式] ,判断有界(但其实也有可能这个序列是无界的),反之,这个序列无界。
分形手指实验目标及方法标题:探索分形手指实验的目标和方法摘要:本文旨在介绍分形手指实验的目标、方法和实施步骤。
我们将深入探讨分形几何学的基本原理以及如何运用这些原理来设计和实施实验。
通过这篇文章,您将对分形手指实验有一个全面、深入和灵活的理解,并能从中获得有价值的知识。
导言:分形几何学作为一门重要的数学分支,研究的是自相似性和递归的几何结构。
近年来,分形手指实验成为学校和实验室中常见的实践活动,有助于引发学生对分形几何学的兴趣,并增进他们对数学的理解。
通过本文,我们将深入探讨分形手指实验的目标和方法,帮助读者在实施实验时更好地理解和运用分形几何学的概念。
一、分形手指实验的目标1.1 增进对分形几何学的理解1.2 培养创造性思维和问题解决能力1.3 激发兴趣和好奇心二、分形手指实验的方法2.1 准备实验所需材料2.2 实验步骤及操作指南2.2.1 第一步:准备水、漂白剂和盐巴2.2.2 第二步:将手指浸泡在水中2.2.3 第三步:涂抹漂白剂2.2.4 第四步:洗净手指2.2.5 第五步:用盐巴覆盖手指2.2.6 第六步:观察和记录结果三、实验结果和讨论3.1 分形手指的外观特征3.2 分形手指与分形几何学的关联3.3 实验可能存在的变数和局限性四、实验结论及进一步探究建议观点和理解:分形手指实验旨在通过操作手指的几何结构来帮助学生理解分形几何学的原理。
通过观察手指的自相似性和递归性,学生能够直观地感受和理解分形几何学的基本概念。
此外,实验还培养了学生的创造性思维和问题解决能力,激发了他们对数学和科学的兴趣。
然而,实验中可能存在一些变数和局限性,例如实验结果的可重复性和不同环境对实验结果的影响。
为了进一步探究分形几何学的应用和相关领域,建议学生可以结合其他实验和理论知识展开更深入的研究。
结论:本文详细介绍了分形手指实验的目标、方法和实施步骤,并探讨了实验结果和其与分形几何学的关联。
通过分形手指实验,学生可以全面、深入和灵活地理解分形几何学的概念。
迭代:分形姓名:学号:班级:数学与应用数学4班实验报告实验目的:以迭代的观点介绍分形的基本特性以及生成分形图形的基本方法,使读者在欣赏美丽的分形图案的同时对分形几何这门学科有一个直观的了解,并从哲理的高度理解这门学科诞生的必然,激发读者探寻科学真理的兴趣。
实验环境:Mathematica软件实验基本理论和方法:在19世纪末及20世纪初,一些数学家就构造出一些边界形状极不光滑的图形,而这类图形的构造方式都有一个共同的特点,即最终图形F都是按照一定的规则R通过对初始图形不断修改得到的。
其中最有代表性的图形是Koch曲线,Koch曲线的构造方式是:给定一条直线段,将该直线段三等分,并将中间的一段用以该线段为边的等边三角形的另外两条边代替,得到图形,然后再对图形中的每一小段都按上述方式修改,以至无穷。
则最后得到的极限曲线即是所谓的Koch曲线。
生成元:Koch曲线的修改规则R是将每一条直线段用一条折线代替,我们称为该分形的生成元。
分形的基本特性完全由生成元确定,因此,给定一个生成元,我们就可以生成各种各样的分形图形。
Julia集绘制方法:(1)设定初值p,q,一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2)设定一个上界值;(3)将矩形区域分成的网格,分别以每个网格点,,,,作为初值利用riter做迭代(实际上,只需对满足的初值点做迭代)。
如果对所有,,则将图形的像素点用黑色显示,否则,如果从迭代的某一步开始有,则用modK种颜色显示相应像素(或者用相应的灰度级显示)。
Mandelbrot集绘制方法:设定一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2)设定一个上界值;(3)将矩形区域分成的网格,分别以每个网格点,,,,作为参数值利用riter做迭代(实际上,只需对的初值点做迭代),每次迭代的初值均取为。
分形和分形维数及其在多孔介质研究中的应用华北科技学院常浩宇1分形、分形几何学和分形维数1.1 分形分形是指自然界中的一些形体,它们具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次,也就是说适当的放大或缩小事物的几何尺寸,整个结构并不改变。
一些经典的分形如:一、三分康托集1883年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集,或称康托尔集。
三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。
它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程三分康托集的构造过程构造出来的(如右图)。
其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的1/3部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。
第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。
第三步,重复删除每个小区间中间的1/3段。
如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。
二、Koch曲线1904年,瑞典数学家柯赫构造了一维,具有无限的长度,但是又小于分形。
根据分形的次数不同,生成的线,四次Koch曲线等。
下面以三次法,其它的可依此类推。
“Koch曲线”几何图形它和三分康托集一样,是一个典型的曲线也有很多种,比如三次Koch曲曲线为例,介绍Koch曲线的构造方。
Koch曲线大于日二维。
KochKoch曲线的生成过程三次Koch曲线的构造过程主要分为三大步骤:第一步,给定一个初始图形――一条线段;第二步,将这条线段中间的1/3处向外折起;第三步,按照第二步的方法不断的把各段线段中间的1/3处向外折起。
这样无限的进行下去,最终即可构造出Koch曲线。
其图例构造过程如右图所示(迭代了5次的图形)。
自然界中如生长得枝枝岔岔的树木,高低不平的山脉,弯弯曲曲的河流与海岸线。
《数学实验》教学大纲课程名称:数学实验英文名称:Experiments in Mathematics 总学时: 60 学分: 3开课学期:大一(下)或大二《数学实验》是在我国高等学校中新开设的一门课程。
现在还处于试点和摸索阶段,有许多不同的想法和作法. 现阶段应当鼓励各种不同的想法和作法, 各自进行探索和试点. 可以而且应当相互交流, 但不必统一, 也不必争论哪种做法更好. 现在首先是要先干起来, 经过若干年实践去积累和总结经验, 根据实践的效果来逐渐完善和成熟. 本教学大纲反映的是我们在中国科技大学试点创建数学实验课程的指导思想和具体做法,只能算是一家之言,供兄弟学校参考。
一.教学目的数学实验课程的教学对象, 是全国所有高校, 不分理工农医等科类的本科生。
课程目的, 是使学生掌握数学实验的基本思想和方法,即不把数学看成先验的逻辑体系, 而是把它视为一门“实验科学”, 从问题出发,借助计算机, 通过学生亲自设计和动手, 体验解决问题的过程, 从实验中去学习、探索和发现数学规律。
既然是实验课而不是理论课, 最重要的就是要让学生自己动手, 自己借助于计算机去“折腾”数学, 在“折腾”的过程中去学习, 去观察, 去探索, 去发现,而不是由老师教他们多少内容。
既不是由老师教理论, 主要的也不是由老师去教计算机技术或教算法。
不着意追求内容的系统性、完整性。
而着眼于激发学生自己动手和探索的兴趣。
二.教学内容的确定从问题出发组织教学内容。
虽然有意识让学生通过实验学会一些基本的方法, 但是并不以这些方法为线索组织课程内容。
而是设计了一些能够引起学生兴趣的问题, 这些问题的引入不需很深的数学知识,便于入门,但这些问题具有深刻的内涵,包括科学发展历史上经典的数学问题,以及具有应用价值的问题。
每个实验围绕解决一个或几个问题来展开, 教学生使用若干种方法来解决所给的问题, 在解决问题中学习和熟悉这些方法, 自己观察结果, 得出结论。
《数学实验》课程简介数学实验是以数值计算、优化方法、数理统计、数学建模以及最基本的数学软件(如MATLAB)为主要内容,在基本数学知识和数学的应用之间架起一座桥梁。
通过“引例→知识→软件→范例→实验(实践)”的教学过程,以实际问题为载体,把数学建模、数学知识、数学软件和计算机应用有机地结合,强调学生的主体地位,在教师的引导下,学习查阅文献资料、用学到的数学知识和计算机技术,借助适当的数学软件,分析、解决一些经过简化的实际问题,并撰写实验报告或论文,经受全方位的锻炼。
它使学生能够体验利用计算机及数学软件解决实际问题的全过程。
《数学实验》教学章节第1章如何用数学解决实际问题§1.1 什么是数学模型§1.2 数学模型的分类§1.3 数学建模的基本方法和步骤第2章飞机如何定价—方程求解§2.1竞争中的飞机制造业§2.2 飞机的定价策略§2.3方程数值求解方法§2.4飞机的最优价格§2.5操练 油价如何影响船速第3章收敛与混沌—迭代§3.1不动点与迭代§3.2图示迭代数列§3.3分歧与混沌§3.4二元函数迭代§3.5操练—迭代与分形第4章种群数量的状态转移模型—微分方程§4.1 人口问题§4.2 微分方程的数值解法§4.3 微分方程图解法§4.4 MATLAB软件求解§4.5 微分方程的应用§4.6操练—盐水的混合问题第5章水塔用水量的估计—插值§5.1 水塔用水量问题§5.2 插值算法§5.3 水塔用水量的计算§5.4 二维插值的应用§5.6操练—确定地球与金星之间的距离第6章医用薄膜渗透率的确定—数据拟合§6.1 医用薄膜的渗透率§6.2 确定医用薄膜渗透率的数学模型§6.3 一元最小二乘法简介§6.4 用曲线拟合方法确定医用薄膜渗透率§6.5 简介曲面拟合§6.6 操练−Malthus人口指数增长模型第7章怎样让医院的服务工作做得更好—回归分析§7.1 一份有趣的社会调查§7.2 如何定量分析病人与医院之间的关系?§7.3 回归分析§7.4 病人对医院的评价如何?§7.5简介非线性回归分析§7.6操练—某类员工的年薪与哪些因素有关?第8章海港系统卸载货物的计算机模拟§8.1 港海系统的卸载货物问题§8.2 海港系统的卸载货物过程分析§8.3 蒙特卡洛模拟思想§8.4 海港系统卸载货物的模拟§8.5 连续系统的计算机模拟§8.6 操练−怎样才能使设备的使用寿命延长?第9章如何在简约的世界里收益最大—线性规划§9.1 华尔街公司的投资选择§9.2 组合投资决策§9.3 线性规划—在平直世界中获取最大利益§9.4 用线性规划软件求解组合投资问题§9.5 如果决策变量只能取整数怎么办?§9.6 操练−动物饲料配置的讲究第10章世界本复杂,如何做得最好—非线性规划§10.1 公交公司的调控策略§10.2 营业额最大化§10.3 非线性规划—在复杂的世界里做得最好§10.4 用非线性规划软件求解最大营业额问题§10.5 山有多少峰,哪里是最高峰?§10.6 操练−“一张白纸好画最美的图”第11章如何表示二元关系?—图的模型及矩阵表示§11.1 如何排课使占用的时间段数最少?§11.2 一种直观形象的表示工具——图§11.3 图的矩阵表示方法§11.4 操练−城市交通的可达性度量问题第12章如何连接通讯站使费用最少?—最小生成树.§12.1 美国AT&T的网络设计算法攻关§12.2 最小生成树—最经济的连接方式§12.3 最小生成树算法§12.4 用最小生成树解决通讯网络的优化设计问题§12.5 怎样使线网费用进一步降低?§12.6 操练−如何设计海底管道网第13章如何实现汽车的自主导航—最短路径§13.1 卫星定位汽车自动导航系统§13.2 汽车导航系统如何为你选择最佳路线§13.3 最短路径问题和算法的类型§13.4 最短路径算法§13.5 Dijkstra算法的MATLAB程序§13.6 从天安门到天坛的最短行车路线§13.7 如何快速求任意两顶点之间的最短路径?§13.8 操练−新建公路的线路设计及其合理性论证附录A:MATLAB软件简介§A.1 概述§A.2 MATLAB环境§A.3 数值运算§A.4 图形功能§A.5 符号运算§A.6 程序设计——M文件的编写§A.7 操练。
分形理论及其发展历程李后强汪富泉被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
它与动力系统的混沌理论交叉结合,相辅相成。
它承认世界的局部可能在一定条件下。
过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。
分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。
1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。
1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。
1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。
这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。
1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。
1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。
1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。
1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。
以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。
二1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。
分形图形学实验报告指导实验报告要求1. 实验名称2. 实验目的、要求3. 实验主要内容(某某算法的实现)4. 实验过程(程序流程图、源代码)5. 实验结果(附上打印的图形)6. 实验小结实验报告一一般分形图形生成实验目的1. koch曲线、sierpinski三角形、cantor集的计算机实现2. 掌握用迭代、递归生成分形实验内容及步骤1、 koch曲线函数:plot(x1,y1) –(x2,y2) (画直线函数)sin( ) (正弦函数)cos( ) (余弦函数)arctan( ) (反正切函数)12、 sierpinski三角形函数: plot(x1,y1) –(x2,y2) (画直线函数)sin( ) (正弦函数)cos( ) (余弦函数)23、 cantor集3实验报告二 l系统语言生成分形图形实验目的1. 掌握用l系统语言生成分形2. koch曲线、sierpinski三角形、cantor集的l系统实现4实验内容及步骤1. 编写程序用l系统语言生成分形图形1) 编写程序生成koch曲线:初始图形是一条线段,生成过程是将线段中间1/3向外折起。
程序伪码如下:kochcurve { ;柯赫曲线angle 6 ;角度增量是60°axiom f ;初始图形是一单位线段f=f+f--f+f ;产生式是将线段中间1/3折起} ;结束2) 用l系统再次生成sierpinski三角。
生成sierpinski三角的伪码如下:hilbert{ ;sierpinski三角,1996-12 angle 4 axiom y ;初始串为任意字母y x=-yf+xfx+fy- ;第一个生成规则y=+xf-yfy-fx+ ;第二个生成规则,由以上规则不断代换 } 3) 模拟草本植物。
注意这里出现了“括号”——可以方便地表示树枝,伪码如下:herbplant { ;生成植物,本程序使用了括号angle 14axiom zz=zfx[+z][-z]x=x[-fff][+fff]fx}5篇二:光学实验报告建筑物理——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量实验三:室内照明实测实验小组成员:指导老师:日期:2013年12月3日星期二实验一、材料的光反射比和光透射比测量一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。
迭代:分形
姓名:
学号:
班级:数学与应用数学4班
实验报告
实验目的:以迭代的观点介绍分形的基本特性以及生成分形图形的基本方法,使读者在欣赏美丽的分形图案的同时对分形几何这门学科有一个直观的了解,并从哲理的高度理解这门学科诞生的必然,激发读者探寻科学真理的兴趣。
实验环境:Mathematica软件
实验基本理论和方法:
在19世纪末及20世纪初,一些数学家就构造出一些边界形状极不光滑的图形,而这类图形的构造方式都有一个共同的特点,即最终图形F都是按照一定的规则R通过对初始图形不断修改得到的。
其中最有代表性的图形是Koch曲线,Koch曲线的构造方式是:给定一条直线段,将该直线段三等分,并将中间的一段用以该线段为边的等边三
角形的另外两条边代替,得到图形,然后再对图形中的每一小段都按上述方式修改,以至无穷。
则最后得到的极限曲线即是所谓的Koch曲线。
生成元:Koch曲线的修改规则R是将每一条直线段用一条折线代替,我们称为该分形的生成元。
分形的基本特性完全由生成元确定,因此,给定一个生成元,我们就可以生成各种各样的分形图形。
Julia集绘制方法:(1)设定初值p,q,一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度
级L);(2)设定一个上界值;(3)将矩形区域
分成的网格,分别以每个网格点,
,,,作为初值利用riter做迭代(实际上,只需对满足的初值点做迭代)。
如果对所有,,则将图形的像素点用黑
色显示,否则,如果从迭代的某一步开始有,则用
modK种颜色显示相应像素(或者用相应的灰度级显示)。
Mandelbrot集绘制方法:设定一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2)
设定一个上界值;(3)将矩形区域分成
的网格,分别以每个网格点,,,
,作为参数值利用riter做迭代(实际上,只需对的初值点做迭代),每次迭代的初值均取为。
如果对所有,,则将图形的像素点用黑色显示,否则,如果从迭代的某一步开始有,则用modK种颜色显示相应像素(或者用相应的灰度级显示)。
IFS迭代绘制分形:设计算机屏幕的可视窗口为
,
按分辨率大小的要求将分成的网格,网格点为,这里
,,
,,
用表示矩形区域,假设我们采取具有
L(如L=256)级灰度的黑白图像绘制,总共的迭代次数为N,其中落于区域中的点的个数为,再记
,,,
则像素的灰度与落于区域中的点数成正比:
,于是即给出了IFS迭代产生的分形的L级灰度图像。
实验内容和步骤及结果分析:
问题一:几个经典的分形图形及其生成元。
Koch雪花曲线
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
Minkowski香肠
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
Sierpinski三角形
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
树木花草
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
问题二:定义Weierstrass函数如下:
,.
对不同的s值,画出函数的图像,观察图像的不规则性与s的关系,由此猜测Weierstrass函数图像的维数与s的关系。
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
结果分析:由上图可知,当s的值越大时,图像越有规则。
故Weierstrass 函数图像的维数与s的关系是s的值越大,维数越大。
问题三:编写绘制Julia集和Mandelbrot集的程序及他们的局部放大。
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
Julia集:
Mandelbrot集
(3)运行。
结果如下图:
问题四:IFS迭代生成Sierpinski三角形,其程序是:
附录(源程序)见文章具体步骤.。