2020-2021学年第一学期广东省广州市越秀区广大附中八年级 期中考试数学试卷
- 格式:docx
- 大小:307.23 KB
- 文档页数:5
2020-2021广州市初二数学上期中模拟试卷含答案一、选择题1.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm 2.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣34 3.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF ;其中正确的是( )A .①②③B .①③④C .①②④D .①②③④4.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
他做对的个数是( ) A .1 B .2C .3D .4 5.如图,ABC V 是等腰直角三角形,BC 是斜边,将ABP V 绕点A 逆时针旋转后,能与ACP 'V 重合,如果3AP =,那么PP '的长等于( )A .32B .3C .42D .336.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处7.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45° 8.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b) 9.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .710.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 311.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b12.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.15.如图,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是_____.16.当m=________时,方程233x m x x =---会产生增根. 17.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .18.某工厂储存350吨煤,按原计划用了3天后,由于改进了炉灶和烧煤技术,每天能节约2吨煤,使储存的煤比原计划多用15天.若设改进技术前每天烧x 吨煤,则可列出方程________.19.若4422222+6a b a a b b +=-+,则22a b +=______.20.已知22139273m ⨯⨯=,求m =__________.三、解答题21.如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?22.已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?23.解方程:(1)212x x-= -(2)21 33193xx x+=--24.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x3 +.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再求出AB即可.【详解】解:∵在Rt△ABC中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB(直角三角形30°所对的直角边等于斜边的一半),又∵CD是斜边AB上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC(直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB .故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.2.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.3.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E 作EG ⊥BC 于G 点,∵E 是∠ABC 的角平分线BD 上的点,且EF ⊥AB ,∴EF =EG (角平分线上的点到角的两边的距离相等),∵在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG =BF ,∵在Rt △CEG 和Rt △AFE 中,AE CE EF EG=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AEF (HL ),∴AF =CG ,∴BA +BC =BF +FA +BG−CG =BF +BG =2BF ,④正确.故选D .【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.4.A解析:A【解析】分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.详解:①-22=-4,故本小题错误;②a 3+a 3=2a 3,故本小题错误;③4m -4=44m,故本小题错误; ④(xy 2)3=x 3y 6,故本小题正确;综上所述,做对的个数是1.故选A .点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.5.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3, 根据勾股定理得:223332'=+=PP ,故选A .6.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC 内角平分线的交点到三角形三边的距离相等,∴△ABC 内角平分线的交点满足条件;如图:点P 是△ABC 两条外角平分线的交点,过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC ,∴PE=PF ,PF=PD ,∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.7.C解析:C【解析】【分析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB ,∵∠BAC=50°,AO 为∠BAC 的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC ,∴∠ABC=∠ACB=65°.∵DO 是AB 的垂直平分线,∴OA=OB ,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC ,∴直线AO 垂直平分BC ,∴OB=OC ,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.8.C解析:C【解析】【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.9.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.12.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).二、填空题13.60【解析】【分析】首先连接AB由题意易证得△AOB是等边三角形根据等边三角形的性质可求得∠AOB的度数【详解】连接AB根据题意得:OB=OA=AB∴△AOB是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.14.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.15.33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC 的距离都相等从而可得到△ABC 的面积等于周长的一半乘以OD 然后列式进行计算即可求解【详解】解:如图连接OA 作OE ⊥AB解析:33【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进行计算即可求解.【详解】解:如图,连接OA ,作OE ⊥AB 于E ,OF ⊥AC 于F .∵OB 、OC 分别平分∠ABC 和∠ACB ,∴OD=OE=OF ,∴S △ABC =S △BOC +S △AOB +S △AOC =111222BC OD AC OF AB OE ⋅+⋅+⋅ =()12BC AC AB OD ++⋅ =12×22×3=33. 故答案为:33.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x -3)-x=m 求得x=-m∵x -3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:3【解析】根据分式性质、分式方程增根的条件进行求解.【详解】 ∵233x m x x ,=--- ∴233x m x x ,-=--- 2(x-3)-x=m,求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.17.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角 解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.18.【解析】【分析】设改进技术前每天烧吨煤则改进技术后每天烧(x -2)吨根据储存的煤比原计划多用15天即可列方程求解【详解】解:设改进技术前每天烧吨煤则改进技术后每天烧(x -2)吨根据题意得:故答案为: 解析:35033503152x x x x---=- 【解析】【分析】设改进技术前每天烧x 吨煤,则改进技术后每天烧(x -2)吨,根据储存的煤比原计划多用15天,即可列方程求解.【详解】解:设改进技术前每天烧x 吨煤,则改进技术后每天烧(x -2)吨, 根据题意得:35033503152x x x x ---=-, 故答案为:35033503152x x x x---=-.本题考查了分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.19.3【解析】【分析】先对原式进行变形得(a2+b2)2-(a2+b2)-6=0经过观察后又可变为(a2+b2-3)(a2+b2+2)=0又a2+b2≥0即可得出本题的结果【详解】由变形后(a2+b2)解析:3【解析】【分析】先对原式进行变形得(a 2+b 2) 2-(a 2+b 2)-6=0,经过观察后又可变为(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即可得出本题的结果.【详解】由4422222+6a b a a b b +=-+变形后(a 2+b 2) 2-(a 2+b 2)-6=0,(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即a 2+b 2=3,故答案为3.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则.20.8【解析】【分析】根据幂的乘方可得再根据同底数幂的乘法法则解答即可【详解】∵即∴解得故答案为:8【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法熟练掌握幂的运算法则是解答本题的关键解析:8【解析】【分析】根据幂的乘方可得293m m =,3273=,再根据同底数幂的乘法法则解答即可.【详解】∵22139273m ⨯⨯=,即22321333m 创=,∴22321m ++=,解得8m =,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.三、解答题21.(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【解析】【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP CQ B C BD PC=∠=∠=,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t=4.533BP==1.5(秒),此时V Q=61.5CQt= =4(cm/s).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.22.所求的多边形的边数为7,这个多边形对角线为14条.【解析】【分析】设这个多边形的边数为n,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n的值,再根据对角线的计算公式即可得出答案.【详解】设这个多边形的边数为n,根据题意,得:(n﹣2)×180°=360°×2+180°,解得n=7,则这个多边形的边数是7,七边形的对角线条数为:12×7×(7﹣3)=14(条),答:所求的多边形的边数为7,这个多边形对角线为14条.【点睛】本题考查了对多边形内角和定理和外角和的应用,注意:边数是n的多边形的内角和是(n-2)•180°,外角和是360°.23.(1)x=﹣2;(2)无解【解析】【分析】(1)方程两边乘最简公分母x(x−2),可以把分式方程转化为整式方程求解;(2)方程两边乘最简公分母3(3x−1),可以把分式方程转化为整式方程求解.【详解】(1)212x x-= -解:去分母得:2x﹣x+2=0,解得:x=﹣2,经检验,x=﹣2是原方程的解.(2)21 33193xx x+=--最简公分母为3(3x﹣1),去分母得:6x﹣2+3x=1,即9x=3,解得:x=13,经检验:x=13是增根,原方程无解.【点睛】此题考查了分式方程的解法和因式分解.此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根.24.见解析【解析】试题分析:(1)根据角平分线性质可证ED =EC ,从而可知△CDE 为等腰三角形,可证∠ECD =∠EDC ;(2)由OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,OE =OE ,可证△OED ≌△OEC ,可得OC =OD ;(3)根据ED =EC ,OC =OD ,可证OE 是线段CD 的垂直平分线.试题解析:证明:(1)∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴ED =EC ,即△CDE 为等腰三角形,∴∠ECD =∠EDC ;(2)∵点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,∴∠DOE =∠COE ,∠ODE =∠OCE =90°,OE =OE ,∴△OED ≌△OEC (AAS ),∴OC =OD ;(3)∵OC =OD ,且DE =EC ,∴OE 是线段CD 的垂直平分线.点睛:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.25.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能.。
2020-2021学年广东省广州市越秀区华侨外国语学校八年级上学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列“QQ表情”中属于轴对称图形的是()A. B. C. D.2.一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A. 3,4,5B. 5,7,7C. 10,6,4.5D.3,6,93.如图,在△ABC中,BC边上的高为()A. BEB. AEC. BFD.CF4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. ∠M=∠NB.AM//CNC. AB=CDD.AM=CN5.已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D.50°6.一个多边形的每一个外角都等于36°,这个多边形的边数是()A. 六边形B. 八边形C. 十边形D.十二边形7.在平面直角坐标系中,点P(-6,6)关于x轴对称的点在()A. 第一象限B.第二象限C. 第三象限D.第四象限8. 如果△ABC≌△DEF,△DEF的周长是13,DE=3,EF=4,则AC的长为()A. 13B. 3C. 4D. 69.等腰三角形的周长是18 cm,其中一边长为4 cm,则腰长为()A. 4 cmB. 7 cmC. 4 cm或7 cmD.无法确定10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法○1△BDF≌△CDE;○2△ABD和△ACD面积不相等;○3BF//CE;○4CE=BF. 其中正确的是()A. 1个B. 2个C. 3个D.4个第3题图第4题图第5题图第10题图二、填空题(本大题共6小题,每小题3分,共18分)11. 空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是_________.12. 如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=_______度.13. 如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,在△ABC的面积12cm2,则图中阴影部分的面积是_______cm2.第11题图第12题图第13题图14. 如图△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCA的度数为______度.15. 如图,在Rt∆ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=________.16.如图,△ABC中,DE是AC的垂直平分线,AE=4 cm,△ABD的周长为14 cm,则△ABC的周长为________.第14题图第15题图第16题图三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,(6分)已知:如图∠B=35°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.18.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.19.(8分)如图,点B,F,C,E在一条直线上,BF=EC,AB//DE,AC//DF.求证:AB=DE.20.(8分)如图,已知△ABC,∠C=90°,AC<BC. D为BC上一点,且到A,B两点的距离相等. (1)用直尺和圆规作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,求∠CAD的度数.21.(10分)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,A(-3,2),B(-4,-3),C(-1,-1).(1)画出△ABC关于y轴对称的图形△A’B’C’.(2)写出A’、B’、C’的坐标(直接写出答案)A’________;B’________;C’___________;(3)写出△A’B’C’的面积为_________.(直接写出答案)22.(10分)在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF. (1)求证:Rt∆ABE≌Rt∆CBF;(2)若∠CAE=60°,求∠ACF的度数.23.(12分)如图,四边形ABCD中,AD//BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.(1)求证:AE=EF;(2)若BE⊥AF,求证:BC=AB-AD.24.(12分)如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO 上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.。
2020-2021学年广东省广州市越秀区二中八年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 等于()A.40°B.50°C.60°D.70°5.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D6.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°7.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形9.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(本大题共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为.12.已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为.13.如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于cm2.14.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.15.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)18.如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.19.如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E (1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.20.如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.21.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.22.两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.23.如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.2.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm【分析】根据已知边长求第三边x的取值范围为:5<x<11,因此只有选项C符合.解:设第三边长为xcm,则8﹣3<x<3+8,5<x<11,故选:C.3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】根据全等三角形对应角相等可知∠α是b、c边的夹角,然后写出即可.解:∵两个三角形全等,∴∠α的度数是72°.故选:A.4.如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 等于()A.40°B.50°C.60°D.70°【分析】首先依据轴对称图形的性质可求得∠E、∠D的度数,再用五边形的内角和减去∠A、∠B、∠E、∠D的度数即可.解:∵直线m是多边形ABCDE的对称轴,∠A=130°,∠B=110°,∴∠A=∠E=130°,∠B=∠D=110°,∵∠A+∠B+∠BCD+∠D+∠E=(5﹣2)180°=540°,∴∠BCD=540°﹣(∠A+∠B+∠D+∠E)=540°﹣130°×2﹣110°×2=60°.故选:C.5.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D【分析】由BE=CF可得BC=EF,然后再利用全等三角形的判定方法分别进行分析即可.解:A、添加BC=EF不能证明△ABC≌△DEF,故此选项错误;B、添加AC=DF可利用SSS判定△ABC≌△DEF,故此选项正确;C、添加AC∥DF可得∠ACB=∠F,不能证明△ABC≌△DEF,故此选项错误;D、添加∠A=∠D不能证明△ABC≌△DEF,故此选项错误;故选:B.6.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B=(180°﹣110°)=35°.故选:B.7.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】先求出每一个外角的度数,再根据边数=360°÷一个外角的度数计算即可.解:180°﹣144°=36°,360°÷36°=10,故这个多边形的边数是10.故选:D.8.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△C′DE;此时可以判断选项A、B、D是成立的,问题即可解决.解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.9.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;关键角平分线的性质判断④.解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD×CE×OH=ab,④正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为(﹣3,﹣5).【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.解:在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为(﹣3,﹣5),故答案为:(﹣3,﹣5).12.已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为18cm或21cm.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故答案为:18cm或21cm.13.如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于2cm2.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×8=4,∴S△BCE=S△ABC=4,∵点F是CE的中点,∴S△BEF=S△BCE=×4=2(cm2).故答案为:2.14.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【分析】连接AD,利用三角形内角和定理可得∠B+∠C=∠1+∠2,然后利用四边形内角和为360°可得答案.解:连接AD,在△AOD和△BOC中,∵∠AOD=∠BOC,∴∠B+∠C=∠1+∠2,∴∠B+∠C+∠BAF+∠EDF=∠1+∠2+∠BAF+∠EDF=∠EDA+∠FAD,∵∠EDA+∠FAD+∠E+∠F=360°,∴∠BAF+∠EDF+∠B+∠C+∠E+∠F=360°,故答案为:360°.15.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.【分析】先根据OB1=1,∠ODB1=60°,可得B1(1,0),∠OB1D=30°,D(0,﹣).再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A10的横坐标.解:∵OB1=1,∠ODB1=60°,∴OD==,B1(1,0),∠OB1D=30°,∴D(0,﹣),如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A10的横坐标是=,故答案为.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)【分析】作线段MN的垂直平分线EF,作∠AOB的角平分线OT,射线OT交直线EF 于点P,点P即为所求.解:如图,点P即为所求.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)根据图形可得,点D的坐标为(2,4)或(2,1)或(﹣4,4)或(﹣4,1).解:(1)所作图形如图所示:;(2)点D的坐标为(2,4)或(2,1)或(﹣4,4)或(﹣4,1).19.如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E (1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段的垂直平分线的性质求出∠DCA的度数,计算即可;(2)根据线段的垂直平分线的性质和三角形的周长公式求出BC+AB=16,计算即可.解:(1)∵AB=AC,∠A=40°,∴∠ACB=∠B=70°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=40°,∴∠DCB=30°;(2)∵DE是AC的垂直平分线,∴DA=DC,EC=AE=5,△DCB的周长=BC+BD+DC=BC+BD+DA=BC+AB=16,则△ABC的周长=AB+BC+AC=26.20.如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.【分析】证明△CFD≌△BEA,根据全等三角形的性质得到∠C=∠B,根据平行线的性质证明结论.解:∵CE=BF,∴CE+EF=BF+EF,即CF=BE,∵AE⊥BC,DF⊥BC,∴∠CFD=∠BEA=90°,在Rt△CFD和Rt△BEA中,,∴Rt△CFD≌Rt△BEA(HL),∴∠C=∠B,∴AB∥CD.21.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.【分析】(1)根据等边三角形的性质就可以得出AB=BC=AC,∠BAC=∠C=60°,就可以得出△ADC≌△BEA;(2)由△ADC≌△BEA就可以得出∠DAC=∠EBA,AD=BE.既可以得出∠BPQ=60°,就可以求出PB的值,进而求出BE的值而得出结论解:(1)证明:∵△ABC是等边三角形,∴AC=AB,∠C=∠BAE=60°,在△ADC与△BEA中,,∴△ADC≌△BEA(SAS);(2)∵△ADC≌△BEA,∴∠DAC=∠EBA,AD=BE.∵∠BPQ=∠BAP+∠ABP,∴∠BPQ=∠BAP+∠DAC=60°.∵BQ⊥AD,∴∠BQP=90°.∴∠PBQ=30°∴BP=2PQ.∵PQ=4,∴BP=8.∵PE=1,∴BE=BP+PE=9,∴AD=BE=9.答:AD=9.22.两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.【分析】(1)根据题意画出图形,确定伴生角为∠B=30°,根据等腰三角形的性质和三角形的内角和定理可求解;(2)根据题意画出图形,确定伴生角为∠B,题目中有三个等腰三角形,得到∠B=∠BAD,∠ADC=∠C=2∠B,根据三角形内角和即可求解.解:(1)如图,△ABC和△ABD中,AB=AB,AD=AC,∠B=∠B,则△ABC和△ABD 是伴生三角形,其中∠B为伴生角,当∠B=50°时,无法画出图形;当∠B=30°,∠C=50°,∵AD=AC,∴∠C=∠ADC=50°,∴∠ADB=130°,∴∠BAD=180°﹣∠B﹣∠ADB=20°.故答案为:130°,20°;(2)如图,等腰△ABC和等腰△ABD中,AB=BC,BC=AD,当AB=AB,AD=AC,∠B=∠B时,△ABC和△ABD是伴生三角形,则AD=AC,∠B是伴生角.∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠C,∴∠ADC=∠C=2∠B,∵BA=BC,∴∠C=∠BAC=2∠B,在△ABC中,∵∠B+∠BAC+∠C=180°,∴∠B+2∠B+2∠B=180°,∴5∠B=180°,∴∠B=36°.23.如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.【分析】(1)连接PC,点P在边BC的垂直平分线上,可得∠PBC=∠PCB,再由点P 在边AC的垂直平分线上,可得∠PAC=∠PCA,从而有∠PBC+∠PAC=∠PCB+∠PCA =∠ACB=110°,则可求解;(2)过点P作PD⊥AC,连接PC,证明Rt△PBH≌Rt△PCD,则有BH=CD,结合图形即可求解.【解答】(1)证明:如图1,连接PC,∵点P在边BC的垂直平分线上,∴PB=PC,∴∠PBC=∠PCB,∵点P在边AC的垂直平分线上,∴PA=PC,∴∠PAC=∠PCA,∴∠PBC+∠PAC=∠PCB+∠PCA=∠ACB=110°,∴∠APB=360°﹣(∠PBC+∠PAC+∠ACB)=360°﹣(110°+110°)=140°;(2)线段AB、AH、AC之间的数量关系是AB=AC+2AH;理由如下:如图2,过点P作PD⊥AC,连接PC,∵点P在∠BAD的平分线上,PH⊥AB,PD⊥AC,∴PH=PD,∵AP=AP,∴AH=AD,∵点P在边BC的垂直平分线上,∴PB=PC,在Rt△PBH和Rt△PCD中,,∴Rt△PBH≌Rt△PCD(HL),∴BH=CD,∴AB﹣AH=AC+AD,∴AB=AC+2AH.。
广东省广州中学2020-2021学年八年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列“表情图”中,属于轴对称图形的是A.B.C.D.2.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.以上都可以3.下列图形中,与已知图形全等的是( )A.B.C.D.4.下列长方形中,能使图形不易变形的是( )A.B.C.D.5.如图,∠1=100°,∠2=145°,那么∠3=( ).A.55°B.65°C.75°D.85°6.如图,△ABC≌△ABD,∠D=90°,∠CAD=60°,则∠ABD的度数为()A.30°B.40°C.50°D.60°7.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.108.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是( )A.6 B.4 C.3 D.29.如图,在△ABC中,BC=10,AB的垂直平分线交BC于D,AC的垂直平分线交BC 与E,则△ADE的周长等于( ).A.8 B.10 C.12 D.1410.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④二、填空题11.如图所示:已知∠ABD=∠ABC,请你补充一个条件:________,使得△ABD≌△ABC.(只需填写一种情况即可)12.如图,在△ABC中,AB=AC,AD是底边BC上的高,若BC=18,则BD=_________.13.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.14.如图,已知AD 所在直线是△ABC 的对称轴,点E 、F 是AD 上的两点,若BC=4,AD=3,则图中阴影部分的面积的值是______.15.若n 边形的内角和是它的外角和的2倍,则n = .16.已知a 、b 、c 为△ABC 的三边,化简:2a b c a b c a b c +----+-+=______.三、解答题17.如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .18.在直角坐标系中,△ABC 的三个顶点的位置如图所示.(1)请画出△ABC 关于y 轴对称的△A ’B ’C ’(其中A ’,B ’,C ’分别是A ,B ,C 的对应点,不写画法).(2)直接写出A ’,B ’,C ’三点的坐标:A ’_____ ,B ’_____ ,C ’_____ . 19.如图,AB =AC ,MB =MC ,直线AM 是线段BC 的垂直平分线吗?20.如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =80°,求∠CAD的度数?21.如图,已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.求∠DCE的大小.22.(1)如图1,△ABC中,∠C=90°,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2,图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.23.已知如图所示,点D在线段AE上,点B在线段FC上,AB=DC,AD=BC,DE=BF,求证:BE=DF.24.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM.25.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF//BC,求证:△AEF是等边三角形; (3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.参考答案1.D【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,A、B,C不是轴对称图形;D是轴对称图形.故选D.2.B【分析】根据等底同高的三角形的面积相等解答.【详解】三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.【点睛】本题考查了三角形的面积,熟记等底同高的三角形的面积相等是解题的关键.3.B【分析】根据全等图形的定义:能够完全重合的两个图形是全等图形.【详解】根据全等图形的定义可得:B选项中图形能够与已知图形完全重合,故选B.【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.4.B【解析】【分析】根据三角形的稳定性进行解答即可.【详解】∵四个选项中只有B存在三角形,∴图形B不易变形,故选B.本题考查的是三角形的稳定性,熟知当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性是解答此题的关键.5.B【解析】试题解析:∵∠1=100°,∠2=145°,∴∠4=180°-∠1=180°-100°=80°,∠5=180°-∠2=180°-145°=35°,∵∠3=180°-∠4-∠5,∴∠3=180°-80°-35°=65°.故选B.6.D【解析】【分析】要求∠ABD只要求出∠DAB,利用全等三角形的对应角相等,即可求解.【详解】∵△ABC≌△ABD,∠CAD=60°,∠CAD=30°,∴∠DAB=∠BAC=12∴∠ABD=180°-∠D-∠DAB=180°-90°-30°=60°,故选:D.【点睛】本题考查的知识点为:全等三角形的性质及三角形的内角和定理;要熟练掌握这些知识,做题时注意应用.7.A分3是腰长与底边两种情况讨论求解.【详解】解:①3是腰长时,三角形的三边分别为7、3、3,3+3=6<7,不能组成三角形;②3是底边长时,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17,综上所述,这个等腰三角形的周长是17,故选A.【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.B【解析】【分析】根据角平分线的性质定理可得.【详解】若BC=12,BD=8;则DC=4;在Rt△ABC中,∠C=90∘,AD平分∠BAC交BC于点D;则点D到AC和AB的距离相等,所以点D到AB的距离=DC=4【点睛】理解角平分线的性质定理.9.B【解析】【分析】根据线段垂直平分线的性质可得AD=BD,AE=EC,进而可得AD+ED+AE=BD+DE+EC,从而可得答案.【详解】∵AB的垂直平分线交BC于D,∴AD=BD,∵AC的垂直平分线交BC与E,∴AE=CE,∵BC=10,∴BD+CE+DE=10,∴AD+ED+AE=10,∴△ADE的周长为10,故选:B.【点睛】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.10.C【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.11.BD=BC【详解】试题分析:判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,故本题中,在∠ABD=∠ABC,AB=AB,BD=BC时,符合SAS的判定规律,故答案可以是BD=BC;考点:全等三角形的性质和判定点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角12.9【解析】【分析】根据到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,判断出AD是BC的中垂线,即可判断出BD=DC,即可求解.【详解】∵AD是边BC上的高,∴AD⊥BC,又∵AB=AC,∴AD是BC的中垂线,∴BD=DC,BC=9,∴BD=12故答案为:9【点睛】此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.13.300【解析】试题分析:根据定义,α=1000,β=500,则根据三角形内角和等于1800,可得另一角为300,因此,这个“特征三角形”的最小内角的度数为300.14.3【解析】分析:通过轴对称可以知道S△BEF=S△CEF,阴影部分的面积等于三角形ABC面积的一半. 详解:∵△ABC关于直线AD成轴对称,∴∠ADB=∠ADC=90°,BD=DC,∵E,F是AD上的两点,∴△EFB与△EFC关于直线AD成轴对称,∴S△BEF=S△CEF.∵S△ABC=4×3÷2=6,∴S阴影部分=12S△ABC=3.点睛:本题考查了轴对称,三角形的面积.15.6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=616.3a-b.【解析】试题分析:三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.∵△ABC的三边长分别是a、b、c,∴必须满足两边之和大于第三边,则a+b-c>0,a-b-c<0,a-b+2c>0,∴|a+b-c|-|a-b-c|+|a-b+2c|=a+b-c+(a-b-c)+(a-b+2c)=3a-b.考点:1.三角形三边关系;2.绝对值;3.整式的加减.17.证明见解析.【解析】【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.【详解】在△AED和△CEB中,AE CE AED CEB DE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△CEB (SAS ),∴∠A =∠C (全等三角形对应角相等).【点睛】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.18.(1)见解析;(2))(2,3);(3,1);(−1,−2).【解析】【分析】(1)根据关于y 轴对称的点的坐标特点画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出△A′B′C′各点的坐标.【详解】(1)如图所示:(2)由图可知,A′(2,3),B′(3,1),C′(-1,-2).故答案为:(2,3),(3,1),(-1,-2)【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 19.是,见解析.【分析】根据线段的垂直平分线的定义,分别证明A 、M 在线段BC 的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC,∴点A在线段BC的垂直平分线上,∵MB=MC,∴点M在线段BC的垂直平分线上,∴直线AM是线段BC的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.20.∠CAD=44°【解析】【分析】根据角平分线定义求出∠CBE=∠EBA=34°,根据三角形外角性质求出∠C,即可求出答案.【详解】∵BE为△ABC的角平分线,∴∠CBE=∠EBA=34°,∵∠AEB=∠CBE+∠C,∴∠C=80°-34°=46°,∵AD为△ABC的高,∴∠ADC=90°,∴∠CAD=90°-∠C=44°.【点睛】本题考查了三角形内角和定理和三角形外角性质,能灵活运用三角形内角和定理求出角的度数是解此题的关键.21.60°【解析】【分析】由△ABC和△ADE是等边三角形可以得出AB=BC=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ABD=60°,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,即可得出结论.【详解】∵△ABC和△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,{AD=AE∠DAB=∠CAEAB=AC,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABC=60°.∴∠DCE=180°-∠ACE-∠ACB=180°-60°-60°=60°.【点睛】本题考查了全等三角形的判定与性质以及等边三角形的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.22.(1)见解析;(2)图2能画一条直线分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132°和84°;图3不能分割成两个等腰三角形.【解析】【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC的垂直平分线就可以了.AC的垂直平分线与AB的交点就是AB的中点;(2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形.图2可以将∠B分成24°和48°.图3不能分成等腰三角形.【详解】(1)如图,直线CE即为所求;(2)图2能画一条直线分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132°和84°.图3不能分割成两个等腰三角形.【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.23.见解析.【解析】【分析】连接BD,根据SSS推出△ABD≌△CDB,根据全等三角形的性质得出∠A=∠C,根据SAS 推出△EAB≌△FCD即可.【详解】证明:连接DB,在△ABD和△CDB中,∵AD=CB,AB=CD,DB=BD,∴△ABD≌△CDB(SSS).∴∠A=∠C.∵AD=CB,DE=BF,∴AD+DE=CB+BF,即AE=CF.在△ABE和△CDF中,AE=CF,∠A=∠C,AB=DC.∴△ABE≌△CDF(SAS).∴BE=DF.【点睛】本题考查了全等三角形的性质和判定,能综合运用定理进行推理是解此题的关键.24.证明见解析【解析】【分析】先根据垂直平分线的性质,判定AM BM =,再求出30B ∠=︒,90CAM ∠=︒,根据直角三角形中30度的角对的直角边是斜边的一半,得出12BM AM CA ==,即2CM BM =. 【详解】如图所示,连接AM ,120BAC ∠=︒,AB AC =,∴30B C ∠=∠=︒,MN 是AB 的垂直平分线,∴AM BM =,∴30BAM B ∠=∠=︒,∴90CAM ∠=︒,∴2CM AM =,∴2CM BM =.【点睛】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.25.(1)见解析;(2)见解析;(3)EC ED =,见解析.【分析】(1)根据等边三角形三线合一的性质可得∠ECB=30°,∠ABC=60°,根据AE=EB=BD ,可得∠ECB=12∠ACB=30°,∠EDB=∠DEB=12∠ACB=30°,根据等角对等边即可证得结论; (2)根据平行线的性质证得∠AEF=∠ABC=60°,∠AFE=∠C=60°,即可证得结论; (3)先求得BE=FC ,然后证得△DBE ≌△EFC 即可.【详解】(1)如图1,在等边△ABC 中,AB=BC=AC ,∴∠ABC=∠ACB=∠A=60°,∵AE=EB=BD ,∴∠ECB=12∠ACB=30°,∠EDB=∠DEB=12∠ACB=30°, ∴∠EDB=∠ECB ,∴EC=ED ;(2)如图2,∵EF ∥BC ,∴∠AEF=∠ABC=60°,∠AFE=∠C=60°,∴△AEF 为等边三角形;(3)EC=ED ;理由:∵∠AEF=∠ABC=60°,∴∠EFC=∠DBE=120°,∵AB=AC ,AE=AF ,∴AB-AE=AC-AF ,即BE=FC ,在△DBE 和△EFC 中,DB EF DBE EFC BE FC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EFC (SAS ),∴ED=EC .【点睛】本题考查了等边三角形的判定和性质,三角形全等的判定和性质,熟练掌握性质和定理是解题的关键.。
2021-2022学年广东省广州市八年级第一学期期中数学试卷一、选择题(共10小题).1.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短2.一个八边形的内角和度数为()A.360°B.720°C.900°D.1080°3.已知a,b,c为三角形的三边,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.0B.2a C.2(a+c)D.2(b﹣c)4.下列说法正确的是()A.如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等腰三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的直线成轴对称图形5.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠36.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°7.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC8.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°9.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°10.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°二、填空题(本大题共6小题,每小题3分,满分18分.)11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.把一块直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.13.已知△ABC的三边长分别为a,b,c,且a,b满足(a﹣1)2+=0,则c的取值范围是.14.已知直角坐标系中点A(a,﹣2)和点B(3,b)关于x轴对称,则b﹣a=.15.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=时,△POQ是等腰三角形.16.如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是.三、解答题(本大题共9小题,满分72分,解答要求写出文字说明、证明过程或计算步骤)17.四边形ABCD中,四个内角度数之比是1:2:3:4,求出四个内角的度数.18.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,求∠D的度数.19.如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°,∠CAE=20°,求∠BAC和∠B的度数.20.如图,已知:在△ABC中,AB=AC,∠BAC=120°,D为BC边的中点,DE⊥AC.求证:CE=3AE.21.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上.(1)在网格中作出△ABC关于y轴对称的图形△A1B1C1;(2)直接写出A1、B1、C1的坐标;(3)若网格的单位长度为1,求△A1B1C1的面积.22.求证:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在△ABC中,∠ACB=90°,∠A=30°.求证:BC=AB.23.已知等边三角形ABC,(1)尺规作图:过顶点A、B、C依次作AB、BC、CA的垂线,三条垂线交于点M、N、G(保留一条垂线的作图痕迹,另两条垂线的作图痕迹可以不保留,不需要写作法);(2)求证:△MNG是等边三角形.24.如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图一,点D在线段AB上,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,探究线段BE和CD的数量关系,并证明;(2)如图二,点D在线段BC上,,BE⊥DE,垂足为E,DE与AB相交于点F,探究线段BE与DF的数量关系,并证明.25.已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE 于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.参考答案一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.盖房子时,木工师傅常常先在窗框上斜钉一根木条,利用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】在窗框上斜钉一根木条,构成三角形,故可用三角形的稳定性解释.解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:A.2.一个八边形的内角和度数为()A.360°B.720°C.900°D.1080°【分析】应用多边形的内角和公式计算即可.解:(n﹣2)•180=(8﹣2)×180°=1080°.故选:D.3.已知a,b,c为三角形的三边,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.0B.2a C.2(a+c)D.2(b﹣c)【分析】根据三角形三边关系定理:三角形两边之和大于第三边,得出a+b﹣c>0,b﹣a﹣c<0,进而去绝对值,化简即可.解:∵a,b,c为三角形的三边,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣[﹣(b﹣a﹣c)]=a+b﹣c+b﹣a﹣c=2(b﹣c).故选:D.4.下列说法正确的是()A.如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等腰三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的直线成轴对称图形【分析】根据全等三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D.解:A.如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C.等腰三角形是关于底边上的中线呈轴对称的图形,故本选项不合题意;D.一条线段是关于经过该线段中点的直线成轴对称的图形,故本选项不合题意;故选:B.5.如图,∠1,∠2,∠3,∠4恒满足关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4﹣∠3C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2﹣∠3【分析】根据外角的性质,可推出∠1+∠4=∠6,∠6=∠2﹣∠3,从而推出∠1+∠4=∠2﹣∠3.故选D.解:∵∠6是△ABC的外角,∴∠1+∠4=∠6,﹣﹣﹣(1);又∵∠2是△CDF的外角,∴∠6=∠2﹣∠3,﹣﹣﹣(2);由(1)(2)得:∠1+∠4=∠2﹣∠3.故选:D.6.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣25°=65°.故选:D.7.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC ≌△DEF,故D选项错误;故选:C.8.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°【分析】根据三角形内角和定理求出∠C,根据折叠的性质求出∠C′,根据三角形的外角的性质计算,得到答案.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.9.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°【分析】依据△ABC≌△AED,即可得到∠AED=∠B,AE=AB,∠BAC=∠EAD,再根据等腰三角形的性质,即可得到∠B的度数,进而得出∠AED的度数.解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.10.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°【分析】如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根据三角形的外角的性质和平角的定义即可得到结论.解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA 于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=20°+(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是八.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.12.把一块直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为130°.【分析】根据对顶角线段得到∠3=40°,再根据三角形的外角性质即可得解.解:如图,∵∠1=40°,∴∠1=∠3=40°,∵∠A=90°,∴∠2=∠3+∠A=130°,故答案为:130°.13.已知△ABC的三边长分别为a,b,c,且a,b满足(a﹣1)2+=0,则c的取值范围是1<c<3.【分析】根据非负数的性质即可求出a与b的值,然后根据三角形三边关系即可求出答案.解:由题意可知:(a﹣1)2+=0,∴a=1,b=2,∴由三角形三边关系可知:1<c<3,故答案为:1<c<3.14.已知直角坐标系中点A(a,﹣2)和点B(3,b)关于x轴对称,则b﹣a=﹣1.【分析】直接利用关于x轴对称点的性质:横坐标相同,纵坐标互为相反数,进而得出答案.解:∵点A(a,﹣2)和点B(3,b)关于x轴对称,∴a=3,b=2,故b﹣a=2﹣3=﹣1.故答案为:﹣1.15.如图,∠AOB=60°,C是BO延长线上的一点,OC=10cm,动点P从点C出发沿CB 以2cm/s的速度移动,动点Q从点O发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=或10时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即10﹣2t=t,解得,t=s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用5s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣5)=t,解得,t=10s故填或10.16.如图,在△ABC中,∠BAC和∠ABC的平分线AE、BF相交于点O,AE交BC于点E,BF交AC于点F,过点O作OD⊥BC于点D,则下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=AB;③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是①、②.【分析】利用角平分线的定义和三角形内角和定理可知∠AOB=90°+,得①正确;在AB上取一点H,使BH=BE,通过ASA证明△HAO≌△FAO,得AH=AF,可得②正确;作OH⊥AC于H,OM⊥AB于M,通过面积法可判断③错误.解:∵∠BAC和∠ABC的平分线AE、BF相交于点O,∴∠OBA=,,∴∠AOB=180°﹣∠OBA﹣∠OAB=180=180°﹣=90°+,故①正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE、BF分别平分∠BAC与∠ABC,∴∠OAB+∠OBA==60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO与△EBO中,,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HAO与△FAO中,,∴△HAO≌△FAO(ASA),∴AH=AF,∴AB=BH+AH=BE+AF,故②正确;作OH⊥AC于H,OM⊥AB于M,∵∠BAC与∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OH=OM=OD=a,∵AB+AC+BC=2b,∴S+==ab,故③错误,故答案为:①、②.三、解答题(本大题共9小题,满分72分,解答要求写出文字说明、证明过程或计算步骤)17.四边形ABCD中,四个内角度数之比是1:2:3:4,求出四个内角的度数.【分析】设四个内角度数分别是x°,2x°,3x°,4x°,由多边形内角和公式可得:x+2x+3x+4x=180(4﹣2),再解方程即可得到答案.解:设四个内角度数分别是x°,2x°,3x°,4x°,由题意得:x+2x+3x+4x=180(4﹣2),解得:x=36,2x°=72°,3x°=108°,4x°=144°,故四边形的四个内角的度数分别为:36°,72°,108°,144°.18.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,求∠D的度数.【分析】先根据三角形全等的判定方法得到△ABC≌△ADC,然后利用全等三角形的对应角相等得到∠D的度数.解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D=130°.19.如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°,∠CAE=20°,求∠BAC和∠B的度数.【分析】已知∠CAE=20°,欲求∠BAC,需求∠BAE.由AE⊥BC,得∠AED=∠AEC =90°,那么∠DAE=∠ADB﹣∠AED=20°.根据角平分线的定义,AD平分∠BAE,得∠BAE=2∠DAE=40°.根据三角形外角的性质,∠B=∠AEC﹣∠BAE=50°.解:∵AE⊥BC,∴∠AED=∠AEC=90°.∴∠DAE=∠ADB﹣∠AED=110°﹣90°=20°.∵AD平分∠BAE,∴∠BAE=2∠DAE=40°.∴∠B=∠AEC﹣∠BAE=90°﹣40°=50°.∠BAC=∠BAE+∠CAE=40°+20°=60°.20.如图,已知:在△ABC中,AB=AC,∠BAC=120°,D为BC边的中点,DE⊥AC.求证:CE=3AE.【分析】连接AD,根据等腰三角形三线合一的性质可得AD⊥BC,再根据等腰三角形两底角相等求出∠C=30°,再求出∠ADE=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半进行求解即可.【解答】证明:如图,连接AD,∵AB=AC,D是BC的中点,∴AD⊥BC,∵∠BAC=120°,AB=AC,∴∠C=(180°﹣120°)=30°,∵DE⊥AC,∴∠ADE=∠C=30°,在Rt△ADE中,AD=2AE,在Rt△ACD中,AC=2AD=4AE,∴CE=AC﹣AE=4AE﹣AE=3AE,即CE=3AE.21.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上.(1)在网格中作出△ABC关于y轴对称的图形△A1B1C1;(2)直接写出A1、B1、C1的坐标;(3)若网格的单位长度为1,求△A1B1C1的面积.【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据A1,B1,C1的位置写出坐标即可.(3)避实就虚面积可知矩形面积减去周围三个三角形面积即可.解:(1)如图,△A1B1C1即为所求.(2)A1(3,4),B1(5,2),C1(2,0);(3)△A1B1C1的面积=3×4﹣×1×4﹣×2×2﹣×2×3=5,22.求证:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在△ABC中,∠ACB=90°,∠A=30°.求证:BC=AB.【分析】根据直角三角形斜边上的中线等于斜边一半,可得CD=BD=AD,再证明△BCD 是等边三角形,即可证明结论.【解答】证明:作斜边AB上的中线CD,则CD=BD=AD=AB,∵∠ACB=90°,∠A=30°,∴∠B=60°.∴△BCD是等边三角形,∴BC=CD=AB.23.已知等边三角形ABC,(1)尺规作图:过顶点A、B、C依次作AB、BC、CA的垂线,三条垂线交于点M、N、G(保留一条垂线的作图痕迹,另两条垂线的作图痕迹可以不保留,不需要写作法);(2)求证:△MNG是等边三角形.【分析】(1)根据等边三角形的性质作CG⊥AB即可;(2)根据等边三角形的性质可得MN,NG,GM是△ABC的中位线,进而可以证明△MNG是等边三角形.【解答】(1)解:如图,点M、N、G即为所求;(2)证明:根据(1)可知:AM⊥BC,BN⊥AC,CG⊥AB,∵△ABC是等边三角形,∴M、N、G分别是BC,AC,AB的中点,∴MN,NG,GM是△ABC的中位线,∴MN=NG=GM=AB.∴△MNG是等边三角形.24.如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图一,点D在线段AB上,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,探究线段BE和CD的数量关系,并证明;(2)如图二,点D在线段BC上,,BE⊥DE,垂足为E,DE与AB相交于点F,探究线段BE与DF的数量关系,并证明.【分析】(1)延长BE、CA交于M,首先利用ASA证明∴△ABM≌△ACD,得CD=BM,再通过ASA证明△MEC≌△BEC,得BE=EM,即可证明结论;(2)作∠ACB的平分线,交BE于Q,交AB于M,由(1)得:BQ=,再利用CQ ∥DE,得平行线分线段成比例证明结论.解:(1)如图,BE=,理由如下:延长BE、CA交于M,∵BE⊥CD,∴∠BEC=90°,∵∠BAC=90°,∴∠BEC=∠BAC,∵∠EDB=∠ADC,∴∠ABM=∠ACD,∵AB=AC,∠BAM=∠BAC=90°,∴△ABM≌△ACD(ASA),∴CD=BM,∵∠MCE=∠BCE,EC=EC,∠BEC=∠MEC=90°,∴△MEC≌△BEC(ASA),∴BE=EM,∴BE=;(2)如图,BE=,理由如下:作∠ACB的平分线,交BE于Q,交AB于M,由(1)得:BQ=,∵,∠BCM=∠ACB,∴∠BDE=∠BCM,∴CQ∥DE,∴,∴,∴,∴BE=DF.25.已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE 于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.【分析】(1)①由题意可得AB=AC=AE,即可求∠ABF=∠AEF,由AD是BC的中垂线可得BF=CF,可证△ABF≌△ACF,可得∠ABF=∠ACF,则结论可得;②延长AD使DP=AD,连接CP,由题意可得AC=CP=CE,∠ACD=∠PCD,即可证∠ECF=∠FCP,则可证△ECF≌△FCP,可得EF=FP=FD+AD;(2)连接CF,延长AD使FD=DP,连接CP,由题意可得∠ABF=∠ACF=∠AEF,△FCP是等边三角形,可证△ACP≌△ECF,即可得EF=AD+DP=AD+DF.【解答】证明:(1)①∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF②EF=FD+AD延长AD使DP=AD,连接CP∵AD=DP,∠ADC=∠PDC,CD=CD∴△ADC≌△PDC(SAS)∴AC=CP=CE,∠ACD=∠PCD∵∠ACF=∠AEF,且∠AMC=∠FME∴∠EFC=∠EAC=60°∵BF=CF,且∠EFC=60°∴∠FCD=30°∵∠FCA=∠FCD﹣∠ACD∴∠FCA=30°﹣∠ACD∵∠ECF=∠ECA﹣∠FCA∴∠ECF=30°+∠ACD∵∠FCP=∠FCD+∠DCP∴∠FCP=30°+∠ACD∴∠ECF=∠FCP,且FC=FC,CP=CE∴△ECF≌△FCP(SAS)∴EF=FP∴EF=FD+AD(2)连接CF,延长AD使FD=DP,连接CP.∵△AEC是等边三角形∴∠EAC=∠ACE=60°,CE=AC=AE,且AB=AC ∴AB=AE∴∠ABF=∠AEF∵AB=AC,AD⊥BC∴AD是BC的垂直平分线∴BF=FC,且AF=AF,AB=AC∴△ABF≌△ACF(SSS)∴∠ABF=∠ACF∴∠ACF=∠AEF且∠AME=∠CMF∴∠EAC=∠EFC=60°∵BF=CF,∠EFC=60°∴∠FCB=30°∵FD=DP,∠FDC=∠PDC,CD=CD ∴△FDC≌△PDC(SAS)∴FC=CP,∠FCD=∠PCD=30°∴∠FCP=60°=∠ACE∴∠ACP=∠FCE且CF=CP,AC=CE ∴△ACP≌△ECF(SAS)∴EF=AP∴EF=AD+DP=AD+DF。
2020-2021学年广东省广州中学八年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个图案中,是轴对称图形的是()A. B. C. D.2.以下列各组线段为边,能组成三角形的是()A. 2,3,5B. 5,6,10C. 1,1,3D. 3,4,93.下列图形中具有稳定性的是()A. 三角形B. 四边形C. 八边形D. 五边形4.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A. △ACE≌△BCDB. △BGC≌△AFCC. △DCG≌△ECFD. △ADB≌△CEA5.如图,已知D为BC上一点,∠B=∠1,∠BAC=78°,则∠2=()A. 78°B. 80°C. 50°D. 60°6.如图,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是()A. AC=A′C′B. BO=B′OC. AA′⊥MND. AB//B′C′7.如图,BE=CF,AE⊥BC,DF⊥BC,根据“HL”证明Rt△ABE≌Rt△DCF,还需添加条件为()A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB=DC8.如图,B处在A处的南偏西50°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东84°方向.则∠C=().A. 80°B. 81°C. 82°D. 83°9.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D=30°,∠A=45°,则∠1+∠2等于()A. 270°B. 210°C. 180°D. 150°10.在如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,若C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6B. 7C. 8D. 9二、填空题(本大题共6小题,共18.0分)11.已知一个三角形的两边长分别为2和4,则第三边a的取值范围是______.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.正六边形的每个内角等于______°.14.如图所示,已知点D、E、F分别是边BC,AC,DC的中点,△EFC的面积为6cm2,则△ABC的面积为______ .15.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,则∠C=______度.16.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF//BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BGC=90°+12③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是______.三、解答题(本大题共9小题,共72.0分)17.如图,AB=AD,CB=CD,求证:△BAC≌△DAC18.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(−6,5),(−3,3).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于y轴对称的△A1B1C1;19.一个多边形的内角和是它外角和的5倍,求这个多边形的边数?20.⑴用一条长为18cm的细绳能围成有一边的长是4cm的等腰三角形吗?为什么?⑴已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。
2020-2021广州市八年级数学上期中第一次模拟试卷(含答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个3.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣344.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④5.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=13S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为()A29B34C.2D41 6.如图,已知a∥b,∠1=50°,∠3=10°,则∠2等于()A .30°B .40°C .50°D .60° 7.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .118.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 9.把代数式2x 2﹣18分解因式,结果正确的是( ) A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D . 11.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.14.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△BDE 的周长为6,则AC=_________________.17.分式2311,26x y xy 的最简公分母是____________________. 18.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个19.已知13a a +=,则221+=a a_____________________; 20.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.三、解答题21.计算:(1)211x x x +-+; 解方程:(2)32833x x x -=- 22.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 2﹣4x ﹣1=0. 25.如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD=BC ,∠DAB=∠CBA ,求证:AC=BD .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x 人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x 人,可得:180180 3.2x x -=+【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.C解析:C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.4.D解析:D【解析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt △CEG 和Rt △AFE 中,AE CE EF EG =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AEF (HL ),∴AF =CG ,∴BA +BC =BF +FA +BG−CG =BF +BG =2BF ,④正确.故选D .【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.D解析:D【解析】解:设△ABP 中AB 边上的高是h .∵S △P AB =13S 矩形ABCD ,∴12 AB •h =13AB •AD ,∴h =23AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 就是所求的最短距离.在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE =22AB AE + =2254+=41,即P A +PB的最小值为41.故选D .6.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a ∥b ,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.7.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.8.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.9.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.10.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.11.D解析:D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.12.B解析:B【解析】【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【详解】∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形,故选B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 14.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD ,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.15.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx-6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值,即可得出m n 的值.【详解】∵x 2+mx-6=(x-3)(x+n )=x 2+nx-3x-3n=x 2+(n-3)x-3n ,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n =1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.16.【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE 再判断出△BDE 是等腰直角三角形设BE=x 然后根据△BDE 的周长列方程求出x 的值再分别求解即可【详解】解:∵∠C=90°AD 平分∠B解析:【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE ,再判断出△BDE 是等腰直角三角形,设BE=x ,然后根据△BDE 的周长列方程求出x 的值,再分别求解即可.【详解】解:∵∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∴CD=DE (角平分线上的点到角两边的距离相等),又∵AC=BC ,∴∠B=45°,∴△BDE 是等腰直角三角形,假设CD BE DE x ===,则BD =,∵△BDE 的周长为6,∴6BD BE DE x x ++=++=,6x =-∴6AC BD x ==+=-+-=故答案为:【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形周长的定义,等腰直角三角形的判定与性质,根据三角形的周长列出方程是解题的关键.17.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解: 解析:236x y【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】 解:分式2311,26x y xy的最简公分母为236x y , 故答案是:236x y .【点睛】本题考查了最简公分母,确定最简公分母的方法一定要掌握.18.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC 中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD 平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:3【解析】根据条件求出各个角的度数,由此确定哪个三角形是等腰三角形解答:∵在△ABC 中,AB =BC ,∠A =36°,∴∠ABC =∠ACB =72°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°,∴∠ABD =∠A =36°,∠BDC =72°=∠C , ∴△ABD 和△BDC 都是等腰三角形.故有三个等腰三角形 故有三个.点睛:本题主要考查了等腰三角形的判定.利用已知条件求出等角是判断等腰三角形的关键. 19.7【解析】【分析】把已知条件平方然后求出所要求式子的值【详解】∵∴∴=9∴=7故答案为7【点睛】此题考查分式的加减法解题关键在于先平方 解析:7【解析】【分析】把已知条件平方,然后求出所要求式子的值.【详解】 ∵13a a+=, ∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a + =9, ∴221+=a a =7. 故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.20.10【解析】【分析】设正多边形的边数为n 然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n 由题意得=144°解得n=10故答案为10【点睛】本题考查了多边形的内角与外角熟记公式解析:10【解析】【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180n n-︒g =144°, 解得n=10.故答案为10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.三、解答题21.(1)1x 1+;(2)x= 1 【解析】【分析】(1)先通分,然后再化简;(2)先去分母,再解方程,最后验根.【详解】 (1)原式=2211111x x x x x -+=+++; (2)32833x x x -=- 3(x-3)=2-8x11x=11x=1 当x=1时,分式的分母不为0,故x=1是分式方程的解.【点睛】本题考查分式的化简和解分式方程,注意解分式方程时,最后一定要验根.22.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解: ①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.2144x x -+,15【解析】【分析】 先算分式的减法运算,再把除法化为乘法,进行约分化简,然后代入求值,即可求解.【详解】原式=221(2)(2)4x x x x x x x ⎛⎫+--⋅⎪---⎝⎭ =221(2)4(2)4x x x x x x x x x +-⋅-⋅---- =2224(2)(4)x x x x x --+-- =24(2)(4)x x x --- =2144x x -+, 当x 2﹣4x ﹣1=0时,x 2﹣4x =1,原式=11145=+. 【点睛】本题主要考查分式的化简求值,掌握分式的通分和约分,是解题的关键.25.见解析.【解析】【分析】要证明AC=BD ,只需要证明△ADB ≌△BAC 即可.【详解】在△ADB 和△BCA 中,AD=BC ,∠DAB=∠CBA ,AB=BA∴△ADB ≌△BAC (SAS )∴AC=BD .【点睛】全等三角形的判定与性质.。
2020-2021 广州市初二数学上期中试题含答案2.“五一 ”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活 动,租车租价为 180 元.出发时又增加了两位同学,结果每位同学比原来少分摊了 3元车 费.若小组原有 x 人,则所列方程为( )180 180 180180 A3B . 3x x2 x x2180 180 180180 C3D .3x2 xx2x3如图,在△ ABC 和△ CDE 中,若∠ ACB CED =AB =CD ,BC =DE ,则下列结论A .△ ABC ≌△ CDEB .CE =AC C . AB ⊥ CD D .E 为 BC 的中点14.要使分式有意义,则 a 的取值应满足( )a3A. a 3B. a 3C. a 3D. a 35.如图, VABC 是等腰直角三角形, BC 是斜边,将 VABP 绕点 A 逆时针旋转后,能与6.如图,在 ABC 中, A 90o, C 30o,AD BC 于D ,BE 是 ABC 的平分 线,且交 ADVACP 重合,如果 AP 3 ,那么 PP的长等于( )B . 2 3C . 4 2D . 3 3一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的A .4 个B .3 个C .2个D .1个不正确的是( )于P,如果AP 2 ,则AC的长为()8.如图,直线 l 1、l 2、l 3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条C .130 °D .140 °9张,其中边长为 a 的正方形卡片 4张,边长为 b 的正方 b 的长方形卡片 4 张.现使用这 9 张卡片拼成一个大的正方形,则这个大正方形的边长为( )公路的距离相等,则可供选择的地址有()A .一处B .二处C .三处D .四处9. 若 2m3, 2 n5,则23m 2n等于()27925A .B .C .2D .25102710.如图,把一张矩形纸片ABCD 沿 EF 折叠后,点 A 落在 CD 边上的点 A ′处,点 B 落在1 的度数为( )A . 115°B .120 11. 如图,有三种规格的卡片共 形卡片 1 张,长,宽分别A . 7B .8C .6D .5A.2a+b B.4a+b C.a+2b D.a+3b 12.若x2+mxy+4y 2是完全平方式,则常数m 的值为()A . 4B .﹣ 4C . ±4D .以上结果都不对二、填空题13.关于 x 的方程2x a1的解是正数,则 a 的取值范围是 ___________ .x114.如果等腰三角形两边长是 6cm 和 3cm ,那么它的周长是 _____ cm . 15.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是 ___ 。
2020-2021学年广东省广州市越秀区广大附中八年级上学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 下列手机软件图标中,是轴对称图形的是()
A. B. C. D.
2. 已知线段,,则下列线段中,能与,组成三角形的是()
A.3cm
B.12cm
C. 15cm
D. 18cm
3. 如图,已知△ABC≌△ADE,若,,则的度数为()
A. 65
B. 70
C. 75
D.85
4. 等腰三角形有一个外角是110,则其顶角度数是()
A. 70
B. 70或40
C. 40
D.110或40
5. 下列各式计算正确的是()
A. B. C. D.
6. 如图所示,线段AC的垂直平分线交线段AB于点D,,则=()
A.5
B.100
C. 120
D. 130
7. 下列两个三角形中,一定全等的是()
A. 两个等腰直角三角形
B. 两个等边三角形
C. 有一个角是100,底角相等的两个等腰三角形
D. 有一条边相等,有一个内角相等的两个等腰三角形
8. 如图,在六边形ABCDEF中,,的平分线与的平分线交于点P,则的度数为()
A. B. C. D.
9. ()()的展开式中,不含和项,则的值是()
A.32
B.-32
C.22
D.-22
10. 如图,等腰△ABC,AB=AC,,ADBC于点D.点P是BA延长线上一点,O点是线段AD上一点,OP=OC,下面的结论:○1AC平分∠PAD;○2∠APO=∠DCO;○3△OPC是等边三角形;○4AC=AO+AP. 其中正确结论的个数为()
A.4
B. 3
C. 2
D. 1
二、填空题(本大题共6小题,每小题3分,共18分)
11. 已知一个多边形的内角和与外角和相等,则这个多边形是______边形.
12. 如图,△ABC,,,AD平分,AC=3,CD=2,则△ABD的面积是________.
13. 已知,则=________.
14. 如图,点E、F分别在等边三角形ABC的边CB、AC的延长线上,BE=CF,FB的延长线交AE于点G,则=________.
15. 如图,在△ABC中,,D是边BC上一点,连接AD,若,DC=, BD=,则AB=_______.(用含,的式子表示)
16. 如图,在正方形ABCD外侧过点A作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中直线DE交直线AP于点F,若,则
三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.)
17,(10分)(1)(4分)计算:
(2)(6分)先化简,再求值;
(2,其中
18.(8分)如图,点A、B、C、D在同一直线上,AM=CN,BM=DN,AC=BD.
求证:BM//DN.
19.(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△;
(2)在DE上画出点P,使PA+PC最小;
(3)在DE上画出点M,使|MB-MC|最大.
20.(10分)如图,点F是△ABC的边BC延长线上的一点,且AC=CF,和的平分线交于点P. 求证:(1)点P在的平分线上;(2)CP垂直平分AF.
21.(12分)填空:=__________.
=_________.
=___________. ……
(1)根据上面的规律得:=___________(其中为正整数,且).
(2)当时,计算:=______;
(3)设,则的个位数字为______;
(4)计算:.
22.(12分)如图,点O是等边△ABC内一点,,,△BOC≌△ADC,连接OD. (1)求证:△COD是等边三角形;
(2)当时,试判断△AOD的形状,并说明理由;
(3)当△AOD是等腰三角形时,求的度数.
23.(14分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC 相交于E,与AB的延长线相交于F,使BF=CE.
○1已知△CDE的面积为1,AE=CE,用含的代数式表示△ABD的面积为______;
○2如图2,在△ABC中,若,G是△ABC外一点,使,AH//BG交CG于H,且,设,,
试探究与之间的数量关系,并说明理由;
(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,求△PQM周长的最小值(用含,的代数式表示).。