小学奥数精讲对策问题
- 格式:doc
- 大小:98.00 KB
- 文档页数:2
第10讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。
哪一方的策略更胜一筹,哪一方就会取得最终的胜利。
解决这类问题一般采用逆推法和归纳法。
二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
所以,先移火柴的人要保证获胜,第一次应移走7根火柴。
练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
每人每次可以拿1至3根,不许不拿,乙让甲先拿。
问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。
问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。
先移者确保获胜的方法是什么?答案1、解:乙一定能取胜,他采取让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,便可取胜.故答案为:乙一定能取胜,他采取让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,便可取胜.解析仔细看题,读懂题意,细心推敲字词句,准确弄懂题目意图,本题主要练习的是倍数、因数的意义,40是4的整数倍,乙只要与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,乙便可取胜.看清题意,特别要注重培养具体问题具体分析的习惯和灵活运用知识的能力,让甲先拿,乙每次拿的根数要保持与甲拿的根数和为4,即甲拿1,乙则拿3;甲拿2,乙则拿2;甲拿3,乙则拿1,乙便可取胜.这样,才能使学生对应用题算得正确迅速.2、能报的数有1,2,3,4,5,6∴,如果66是胜利,则也是胜利因为对方1,你就6,对方2,你就5,以此类推.于是,3是第一个必胜点.10是第二个,以此类推.就看谁抢到这些数字直接就报3则必胜3、解:因为,1994个空格,走到终点需要1993步(起点不算),(1994-1)÷(1+3)=498…1,先移者第一次向右移1格,以后每一轮保证向右移的格数与对方加起来是4格,由此,先移者胜.故答案为:解析:因为,(1994-1)÷(1+3)=498…1,所以,先移者确保获胜的方法是:第一次向右移1格,即移到第2格,以后每一轮保证向右移与对方加起来是4格,由此先移者获胜.解答此题的关键是,根据所给的格数和所要求的移动格子数,判断出先移者第一次移动的格数,及先移者每次移动的格子数,先行者即可获胜.【例题2】有1987粒棋子。
第三十七周对策问题专题简析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。
哪一方的策略更胜一筹,哪一方就会取得最终的胜利。
解决这类问题一般采用逆推法和归纳法。
例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
所以,先移火柴的人要保证获胜,第一次应移走7根火柴。
练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
每人每次可以拿1至3根,不许不拿,乙让甲先拿。
问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。
问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。
先移者确保获胜的方法是什么?例题2:有1987粒棋子。
甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。
现在两人通过抽签决定谁先取。
你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。
小学奥数精讲:对策问题之必胜策略小学奥数精讲:必胜策略对策问题知识点总结:1.一取余制胜(取棋子,报数游戏)1.1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)如果有余数,先拿必胜,拿掉余数,之后总与对手凑成1+n即可。
如果无余数,则后拿,总与对手凑成1+n即可。
1.2.每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
2.抢占制胜点(倒推法)2.1.能一步到棋子的位置均是不能走的地方即负位2.2.处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
3.对称法3.1.同等情况下,模仿对方步骤可以达到制胜目的。
3.2.不同等情况下,创造对等局面方可制胜。
例题:1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16……4,有余数,先拿必胜。
甲先拿4个;乙拿a个,甲就拿6-a个。
2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10,无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜。
3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124……7,有余数,先走必胜。
甲先走7格;乙走a格,甲就拿8-a个必胜。
4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
小学奥数精讲:对策问题之必胜方法简介本文档旨在介绍一些小学奥数中的对策问题以及必胜方法。
学生经常面临各种各样的题型和挑战,本文将提供一些建议和策略,帮助学生克服困难,取得好成绩。
1. 阅读题阅读题是小学奥数中常见的问题之一。
解决阅读题的关键在于提高阅读理解能力和速度。
以下是一些必胜方法:- 阅读练:定期进行阅读练,包括故事书、报纸、杂志等,提高阅读理解能力。
- 注意时间管理:在考试中,合理分配时间给每个阅读题,不要花太多时间在一个问题上。
- 理解关键信息:在阅读过程中,学会提取和理解关键信息,帮助快速回答问题。
2. 计算题计算题需要学生具备强大的计算能力和数学思维。
以下是一些必胜方法:- 熟悉基本运算:熟练掌握加减乘除等基本运算,并做到心算快速准确。
- 多做题:通过不断练提高计算能力和速度,遇到较难的计算题时也能迅速解决。
- 运用技巧:学会利用一些数学技巧和公式简化计算步骤,提高效率。
3. 推理题推理题是需要学生进行逻辑思维和推理的题型。
以下是一些必胜方法:- 分析题目:仔细读题,理解问题背景和要求,分析题目中的条件和关系。
- 列清单:对于复杂的推理题,可以列清单来记录和整理问题中的信息和条件,帮助推理过程。
- 多实践:通过解决各种推理题来锻炼逻辑思维能力,提高解题的准确性和速度。
4. 选填题选填题需要根据题目要求,从给定的选项中选择和填入正确的答案。
以下是一些必胜方法:- 仔细阅读选项:在填写答案之前,仔细阅读选项并理解每个选项的含义。
- 排除法:通过排除一些明显错误的选项,缩小答案的范围,并选择最合适的答案。
- 注意题干:注意题干中的提示和关键信息,帮助选取正确的答案。
结论通过掌握上述对策问题的必胜方法,学生可以在小学奥数中取得更好的成绩。
不仅要提高知识水平,还要培养良好的研究惯和解题思路。
多做练,注重理解和分析,相信每个学生都能在小学奥数中取得成功。
以上是关于小学奥数对策问题之必胜方法的介绍,希望对学生们有所帮助。
小学奥数精讲:对策问题之必胜策略知识点总结:一取余制胜(取棋子,报数游戏)1.每次取1~n个棋子,总数,取最后一个赢策略:总数÷(1+n)有余则先,拿掉余数,之后总与对手凑成1+n即可无余则后,总与对手凑成1+n即可2. 每次取1~n个棋子,总数,取最后一个输策略:最狠的做法就是留给对方一枚棋子,对方不取也得取。
所以想赢的关键就在于能不能取到倒数第二枚棋子。
问题转化为:每次取1~n个棋子,总数,取倒数第二枚棋子赢。
(总数-1)÷(1+n),之后同1中做法。
二.抢占制胜点(倒推法)1. 能一步到棋子的位置均是不能走的地方即负位2. 处处为别人着想。
自己不能走的地方逼别人走进去即可,即确定制胜点。
三.对称法1. 同等情况下,模仿对方步骤可以达到制胜目的。
2. 不同等情况下,创造对等局面方可制胜。
1.桌子上放着100根火柴,甲、乙二人轮流每次取走1~5根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:100÷(1+5)=16 (4)有余数,先拿必胜,甲必胜。
(1)甲先拿4个;(2)乙拿a个,甲就拿6-a个2.甲乙两人轮流报数,报出的数只能是1~7的自然数。
同时把所报数一一累加起来,谁先使这个累加和达到80,谁就获胜。
请问必胜的策略是什么?分析:80÷(1+7)=10无余数,后拿必胜。
甲拿a个,乙就拿8-a个必胜3.1000个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者谁赢。
甲为了获胜,第一步必须向右移多少格?分析:(1000-1)÷(1+7)=124 (7)有余,先走必胜。
(1)甲先走7格(2)乙走a格,甲就拿8-a个必胜4.5张扑克牌,每人每次只能拿1张到4张。
谁取最后一张谁输。
必胜的策略是什么?分析:先拿4张,留给别人1张就行。
5.现有1000根火柴,甲乙两人轮流去拿,每人每次最少拿1根,最多拿7根,谁取最后一根谁输。
小学生数学奥赛中的常见难题解析与应对策略随着教育水平的提高和数学教育的普及,参加数学奥赛的小学生数量逐渐增多。
然而,对于许多小学生来说,奥赛中的数学问题常常令人感到困惑和头疼。
本文旨在解析小学生数学奥赛中常见的难题,并提供应对策略,帮助小学生更好地应对数学奥赛。
一、质的量化问题在数学奥赛中,小学生经常会遇到质的量化问题,即将抽象的问题转化为具体的数字表达方式。
这类问题需要学生通过抓住问题的关键信息,将其转化为可计算的数值。
为了应对这类题目,小学生可以采取以下策略:1. 画图解题:将问题所描述的情景或关系用图形表示,有助于学生更好地理解和解答问题。
2. 列表格:将问题信息逐条列成表格,以方便进行数据比较和分析。
3. 提炼关键词:将问题中的关键词语提取出来,通过设变量的方式来表示,以便进行数值计算。
二、趋势预测和推理问题数学奥赛中,常常会出现需要根据给定规律或序列进行趋势预测和推理的问题。
这类问题考察学生的逻辑推理和数列观察能力。
为了解决这类问题,小学生可以尝试以下方法:1. 规律总结:观察题目所给的数列或图形,总结潜在的规律,并将其推广到未给出的部分,预测后续数字或形状。
2. 反向法:从目标结果出发,通过逆向思维去寻找规律,得出前面的数字或形状。
3. 枚举法:将所有可能的情况都列举出来,并逐一检查,找出符合题目要求的规律。
三、几何问题几何问题一直是小学生数学奥赛中的难点。
对于这类问题,小学生可以采取以下方法来应对:1. 利用图形性质:熟记常见几何图形的性质和定理,运用这些性质来解决问题。
2. 画图解题:对于几何问题,可以通过画图来直观地理解问题、找到解题思路。
3. 分解复杂问题:对于复杂的几何问题,可以尝试将问题分解为多个简单的子问题,逐个解决,最后将结果合并。
四、实际问题的数学建模在数学奥赛中,经常会出现需要将实际问题转化为数学模型进行求解的题目。
这类问题考察学生的应用数学能力和解决实际问题的能力。
第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。
哪一方的策略更胜一筹,哪一方就会取得最终的胜利。
解决这类问题一般采用逆推法和归纳法。
二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
所以,先移火柴的人要保证获胜,第一次应移走7根火柴。
练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
每人每次可以拿1至3根,不许不拿,乙让甲先拿。
问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。
问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。
先移者确保获胜的方法是什么?【例题2】有1987粒棋子。
甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。
现在两人通过抽签决定谁先取。
第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。
哪一方的策略更胜一筹,哪一方就会取得最终的胜利。
解决这类问题一般采用逆推法和归纳法。
二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
所以,先移火柴的人要保证获胜,第一次应移走7根火柴。
练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
每人每次可以拿1至3根,不许不拿,乙让甲先拿。
问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。
问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。
先移者确保获胜的方法是什么?【例题2】有1987粒棋子。
甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。
现在两人通过抽签决定谁先取。
对策问题1.使学生初步学会根据题中的条件和问题,选择分析问题的思路,分析题目表示的数量关系,进而培养学生学会分析问题的能力。
2.使学生养成认真审题,自觉检验的良好习惯,发展学生连贯、有序、有层次的思维能力。
1.对策问题涉及的课本知识并不多,只是技巧性比较强,诀窍是控制。
2.游戏中运用较多,而用数学的观点和方法来研究取胜策略。
例1.桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根。
规定谁取走最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?练习1.有3堆火柴,分别有1根、2根与3根火柴。
甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。
如果采用最佳方法,那么谁将获胜?在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4。
利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。
由此出发,对于例1的各种变化,都能分析出谁能获胜及获胜的方法。
例2.在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?例3.将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?例4.两人从1开始按自然数顺序轮流依次报数,每人每次只能报1~5个数,谁先报到50谁胜。
你选择先报数还是后报数?怎样才能获胜?例5.1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者输。
甲为了获胜,第一步必须向右移多少格?例6.今有两堆火柴,一堆35根,另一堆24根。
两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。
规定取得最后一根者为赢。
问:先取者有何策略能获胜?请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?。
1.妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.小明估算了一下,完成这些工作要花20分钟.为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?[分析与解]在这道题里,最合理的安排应该最省时间.先洗开水壶,接着烧开水,烧上水以后,小明需要等15分钟,在这段时间里,他可以洗茶壶,洗茶杯,拿茶叶,水开了就沏茶,这样只用16分钟.2.图9-1是一张道路图,每段路旁标注的数值表示小王走这段路所需的分钟数.问小王从A出发走到B最快需要多少分钟?[分析与解]如下图所示,标上字母:注意关键点C.从A到B的道路如果经过C点,那么,从A到C的道路中选一条最省时间的,即AGC;从C到B的道路中也选一条最省时间的,即CFB.因而从A到B经过C的所有道路中最省时间的就是这两条道路连接起来,即AGCFB.它对应的总时间时48分钟.剩下的只要比较从A到B而不经过C点的道路与道路AGCFB看哪个更加节省时间.不经过C点的道路有两条:ADHFB,需49分钟;AGIEB,需49分钟.所以,从A到B最快需要48分钟.3.甲、乙、丙3名车工准备在同样效率的3个车床上车出7个零件,加工各零件所需要的时间分别为4,5,6,6,8,9,9分钟.3人同时开始工作,问最少经过多少分钟可车完全部零件?[分析与解]加工所有的零件共需:4+5+6+6+8+9+9=47分钟,平均到三台车床上加工,平均每台加工时间为分钟.由于加工各零件都需要整数分钟,因此最快需16分钟完成,但是无论怎么分组,都做不到;因此延长1分钟,即17分钟,有(6,9),(6,9),(4,5,8),满足题意.所以,最少经过17分钟可车完全部零件.4.如图9-2,5所学校A,B,C,D,E之间有公路相通,图中标出了各段公路的千米数.现在想在某所学校召开一次学生代表会议,应出席会议的代表A,B,C,D,E校分别有6人、4人、8人,7人、10人.为使参加会议代表所走的路程总和最小,会议应选在哪个学校召开?[分析与解]先比较A、B两地,以B地为集合地较A地,使29人少走2千米,6人多走2千米,所以B地比A地好.B,C,D,E,F不能简单的比较出.B地集合,共行走6×2+8×3+7×2+10×(3+2)=100千米;C地集合,共行走6×(2+3)+4×3+7×(2+3)+10×2=97千米;D地集合,共行走6×(2+2)+4×2+8×(3+2)+10×4=112千米;E地集合,共行走6×(2+3+2)+4×(3+2)+8×2+7×4=106千米.有到C地的路程总和最小,所以集合地应选在C学校.5.如图9-3,有10个村坐落在从县城出发的一条公路上,图中的数字表示各段公路的长度,单位是千米.现在要安装水管,从县城送自来水供给各村.可以用粗细两种水管,粗管足够供应所有各村用水,细管只能供一个村用水.粗管每千米要用8000元,细管每千米要用2000元.把粗管和细管适当搭配,互相连接,可以降低工程的总费用.按你认为最节约的办法,费用应是多少元?[分析与解]将这个村子依离县城从近到远记为A1,A2,A3,…,A10,由上表知,每车上跟车4名或5名工人,这样所需的装卸工人数最少为26名.7.有5个工件需要先在甲机床上加工,然后在乙机床上加工,每个工件需加工的时间如图9-5所示,单位是小时.那么加工完这5个工件所需的总工时最短是多少小时?[分析与解]从表中可看出机床A总加工时间是26小时,机床B总加工时间是22小时.同一工件不能同时在两个机床上加工,先在机床A加工,后在机床B加工的顺序不能颠倒.但两个机床可以同时工作,所以把工件2放在最后加工,所需工时数最少.用机床A的总加工时间加上工件2在机床B加工所需时间就是本题的解.所以,加工完这五个工件至少需要:3+4+7+5+7+2=28小时.8.北京和上海分别制成同样型号的车床l0台和6台,这些车床准备分配给武汉11台、西安5台,每台车床的运费如图9-6所示,单位为百元.那么总运费最少是多少元?[分析与解]如果有一台车床从北京运往武汉,另一台运往西安,它们的总运费为1500元.交换它们的终点,让北京的车床运往西安,上海的车床运往武汉,总运费为1300元.由此知北京运往武汉及上海运往西安的方案必不是最佳.北京运出的车床比西安需求的多,因此有车床是从北京运往武汉,从而知最佳方案为上海的车床运往武汉,北京的车床5台运往武汉,5台运往西安,总运费为:6×700+5×500+5×600=9700元.9.电车公司维修站有7辆电车需要维修.如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟.每辆电车每停开1分钟的经济损失是11元.现在由3名工作效率相同的维修工人各自单独工作,要使经济损失减到最小程度,那么最小的损失是多少元?[分析与解]因为3个工人各自单独工作,工效又相同,因此,每人维修得时间应尽量相等,设需维修得车辆分别为:A、B、C、D、E、F、G,修复得时间依次是12,17,8,18,23,30,14分,则第一个工人应修复的车是:C、G、D;第二个工人应修复的车是:B、E;第三个工人应修复的车是:A、F.又因为要求把损失减少到最低程度,所以,每人应尽量先修复需短时间修好的车辆,这样,可按以下的顺序开修:第一个人:8,14,18;第二个人:17,23;第三个人:12,30.第一个人修复的车辆经济损失总和是:(8+8+8+14+14+18)×11=770元.第二个人修复的车辆经济损失总和是:(17+17+23)×11=627元.第三个人修复的车辆经济损失总和是:(12+12+30)×11=594元.所以,7辆车经济损失最少为770+627+594=1991元.10.某花园的小径如图9-7所示,一个人能否从图中标有1的点出发,不重复地走遍所有小径?如果能,请给出走法;如果不能,请标出最少必须重复的那些小径.[分析与解]一个人不可能从图中的第1个点的位置出发,不重复地走过花园的所有小径.因为图中3,4,5,6,7,8都是奇点,所以知道必须重复的小径有3→4,5→6,7→8三段.11.有100根火柴,甲、乙两人轮流取,规定每次可取1~10根火柴,以先取完火柴的人为胜者.如果甲先取,那么谁有必胜策略?[分析与解]先取者甲一定能得胜.因为100=9×11+1.甲开始取1根,(余下99根是11的倍数).这时不论乙取多少,甲再取的火柴根数与乙刚才的数目凑成11.这时余下88根,仍是11的倍数.依此进行,直至最后余下11根火柴时,轮到乙取,这时不论乙取几根火柴,余下的火柴甲都可一次取完.12.桌上有一块金帝牌巧克力,它被直线划分为排成3行7列的21个小方块.现在让你和对手进行一种两人轮流切巧克力的游戏,规则如下:①每次只许沿一条直线把巧克力切成两块;②拿走其中一块,把另一块留给对手再切;③谁能留给对手恰好是一个小方块,谁就取胜.如果请你首先切巧克力,那么你第一次应该切走多少个小方块,才能使你最后获胜?[分析与解]若想给对手留下一个小方块,必使对手上一次留给自己一行或一列才行.这样上一次留给对手的行数必为2.因为行或列大于2,对手就不一定会留下一行或一列,要留给对手2行或2列,必须使对手上一次留下两行或两列且又不能是两列两行的情况.……依次类推,每次留给对手行列数相等的巧克力是必胜策略.由此可知先取者有必胜策略,只要他第一次取走3行4列的一块即12个小方块,之后按上述策略即可获胜.13.有1996个棋子,两人轮流取棋子,每次允许取其中的2个、4个或8个,谁最后取完棋子,就算谁获胜.那么先取的人为保证获胜,第一次应取几个棋子?[分析与解]易知若最后剩下6个棋子给对方就可以获胜.进一步推知,剩下12个棋子给对方时,若对方取2个或4个可以使下一次剩给对方6个棋子.若对方取8个则取走余下的4个可以直接获胜.因此我们考虑如果每次剩下棋子使6的倍数,就可以保证必胜.由1996÷6=332……4,知先取的人第一次应取4个棋子.14.甲和乙两人做数学游戏:在黑板上写一个自然数,轮到谁走时,谁就从该自然数中减去它的某个非零数字,并用所得的差替换原数.两人轮流走,谁所得到的数是零,就算谁赢.,如果开始在黑板上写着数1994,并且甲先走,问谁有必胜策略?[分析与解]获胜的人必使对方最后留下一个不为0的一位数.那么前一次留给对方只能是10.这又要求前一次留给对方的是11~19中的某数.所以前再前一次留给对方的只能是20.……依次可以看出每次留给对方末位数为0的必定胜出.即必胜策略是每次减去黑板上数的个位数字即可.现在黑板上原始数为1994,则甲开始减去4,留下1990给乙;于是乙留下的数字只能是1981~1989中的某个,甲对应的减去这个数的个位数字,留下1980给乙;……15.甲、乙两人轮流在黑板上写下不超过l0的自然数,规定每次在黑板上写的数要满足以下条件:它的任何倍数都不能是黑板上已写的数.最后不能写的人为失败者.如果甲第一个写数,那么谁有必胜策略?[分析与解]甲一定获胜,甲可以先写6,去掉其能作为倍数的数:1,2,3,6,乙只能写4,5,7,8,9,10中的一个.将4,5,7,8,9,10分成三组:(4,5),(7,8),(9,10)乙写任何一组中的某个数,甲就写同一组中的另一个数,从而甲一定获胜.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二十八讲对策问题阅读与思考战国时期,齐王与大将田忌约定,双方各出上、中、下三个等级的马各一匹,进行三场对抗赛,输一场付给胜者黄金一千两。
由于田忌的马比齐王同等级的马都要逊一筹,所以,同等级的马进行比赛时,齐王赢了三场,得到了三千两黄金。
当齐王再次邀请田忌赛马时,田忌好为难:一方面是必败的结果,另一方面是不能违抗大王的旨意。
就去与军师孙膑商量,孙膑是位足智多谋的军事家,他巧妙地帮田忌出了一个主意:用自己的下等马与国王的上等马比赛,而用自己的上等马与国王的中等马比赛,再用自己的中等马与国王的下等马比赛。
结果是田忌输了第一场,胜了第二、三场,还赢了国王的一千两黄金。
这就是著名的“田忌赛马”的故事,它是斗智策略的精彩范例。
在用数学解决问题时,有时也经常出现一些有趣的智力“对弈”问题,如何取胜呢?就需要我们利用数学中的原理和方法,正确、合理地选择“对策”,使自己获胜或取得最佳效果。
用数学的观点和方法来研究取胜策略问题的数学分支叫做对策论或博弈论。
这类问题是思想和方法在日常生活及一些军事、体育比赛中得到了越来越广泛的应用。
解决这类问题往往需要设想对方可能采取的各种方案,并使自己的策略能在对方所采取的各种方案中都占据有利的局面。
我们把这种局面称作“胜局”,所心在一种具体规则下,是否存在胜局,怎样寻找胜局和如何把握胜局就成了研究对策问题的关键。
在对策问题中,我们通常采用的是逆推法和对称法。
逆推法就是在设计游戏策略时,往往从正面不容易想到好的方法,就从结果逆推游戏过程,采用逆向思维从后面往前面想的一种策略;对称法就是通过模仿对方的游戏步骤,使得对方始终面临平衡状态的一种策略。
典型例题|例1|两人轮流报数,但报出的数只能是1至8的自然数,同时把所报的数一一累加起来,谁先使累加数的和达到80,谁就获胜,问怎样才能确保获胜?训练1:两人轮流报数,每人每次报一个数,但只能报1至5五个自然数,同时把所报的数一一累加起来,谁先使这个累加和达到40,谁就获胜。
游戏与对策(一)【例2】(★★★) 【例1】(★★)桌子上放着20根火柴,甲、乙二人轮流每次取走1~2根。
规定谁取走桌子上放着20根火柴,甲、乙二人轮流每次取走1~3根。
规定谁取走最后最后一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将一根火柴谁获胜。
如果双方都采用最佳方法,甲先取,那么谁将获胜?【例3】(★★★)桌子上放着20根火柴,甲、乙二人轮流每次取走1~3根。
规定谁取走最后一根火柴谁输。
如果双方都采用最佳方法,甲先取,那么谁将获胜?【例4】(★★★)右图是一个4×6的方格棋盘,左上角有一枚棋子。
甲先乙后,二人轮流走这枚棋子,每人每次只能向下,向右或向右下走一格。
如图中棋子可以走入A、B、C三格之一,谁将棋子走入右下角方格中谁获胜。
如果都按最佳方法走,那么谁将获胜?有什么必胜的策略?1【例5】(★★★★)把一棋子放在如图左下角格内,双方轮流移动棋子(只能向右、向上或向右上移),一次可向一个方向移动任意多格。
规定不能将棋子直接从【例6】(★★★)今有两堆火柴,一堆15根,另一堆12根。
甲乙两人轮流在其中任一堆中拿取,甲先乙后。
取的根数不限,但不能不取。
规定取得最后一根者为如何取胜?【例7】(★★★)下图是一种“红黑棋”,甲、乙两人玩棋,分别取红、黑两方。
规定:下棋时,每人每次只能走任意一枚棋,每枚棋子每次可以走一格或几格。
红棋从左向右走,黑棋从右向左走,但不能跳过对方棋子走,也不能重叠在对方有棋子的格中。
一直到谁无法走棋时,谁就失败。
甲先乙后走棋,问甲有没有必胜的策略?【例8】(★★★★)有一个3×3的棋盘以及9张大小为一个方格的卡片,9张卡片分别写有:1,3,4,5,6,7,8,9,10这几个数。
甲乙两人做游戏,甲9 6的和,乙计算左、右两列数的和,和数大的一方取胜,甲有没有必胜策略?2【本讲总结】【本讲总结】一、倒推法:桌子上放着m根火柴,甲、乙二人轮流每次取走1~n根。
奥数对策问题的教案及反思教案标题:奥数对策问题的教案及反思教案目标:1. 了解奥数对策问题的基本概念和解题方法;2. 提供学生有效的解题策略,帮助他们在奥数竞赛中取得更好的成绩;3. 培养学生的逻辑思维能力和问题解决能力;4. 引导学生反思自己的学习过程,找出问题并进行改进。
教学步骤:引入(5分钟):1. 引导学生思考什么是奥数对策问题,以及在奥数竞赛中它们的重要性。
2. 通过一个简单的实例,引出本堂课的主题。
讲解(10分钟):1. 讲解奥数对策问题的基本定义和常见解题方法,如递推、归纳、反证等。
2. 提供一些简单的例题,解析其中的解题策略和思路。
实践(15分钟):1. 分组活动:将学生分成小组,每组给出一道奥数对策问题进行解答,并讨论解题过程和策略。
2. 学生向其他小组展示自己的解题过程和策略,互相学习和交流。
拓展(10分钟):1. 针对性讲解更复杂的奥数对策问题,并给出解题思路和方法。
2. 学生尝试解答一些较难的奥数对策问题,并与同学共享解题心得。
反思(10分钟):1. 引导学生反思自己在解答奥数对策问题中遇到的困难和问题,以及如何克服这些困难。
2. 讨论学生自己的解题方法,分享有效的解题技巧和策略。
3. 老师对学生的学习过程进行总结和点评,给予鼓励和建议。
作业(5分钟):布置适量的奥数对策问题作业,提醒学生在解题过程中运用所学的方法。
教案反思:1. 教师应密切关注学生在实践环节的表现,及时纠正错误和指导学生。
2. 需要注意提供合适难度的例题和题目,确保学生能够逐步掌握不同类型的奥数对策问题。
3. 在反思环节,教师要积极引导学生思考,促进他们深入了解自己的学习过程和不足,为今后的学习提供改进方向。
备注:根据教育阶段和学生的实际情况,教案的具体内容和教学步骤可能有所调整和修改。
六年级奥数讲义第37讲对策问题第三十七周对策问题专题分析:同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。
生活中的许多事情都包含数学原理。
人们总是在比赛和战斗中玩游戏,从体育比赛到军事比赛。
人们总是希望自己或其中一方在竞争和战斗中获胜,这就要求参与竞争的双方制定各自的战略。
这就是所谓“知己知彼,百战不殆”。
哪一方的策略更好,哪一方将赢得最后的胜利。
解决这类问题一般采用逆推法和归纳法。
例1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。
挨到谁移走最后一根火柴就算谁输。
如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。
如果先移动比赛的人想赢,他可以得到答案,只要他参加第999场比赛,也就是说,使用反向推法。
设先移的人为甲,后移的人为乙。
甲要取胜只要取走第999根火柴。
因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。
依次类推,甲取的与乙取的之和为8根火柴)。
由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。
因此,首先移动比赛的人应该确保胜利,并第一次移除7场比赛。
练习1:一、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。
每人每次可以拿1至3根,不许不拿,乙让甲先拿。
问:谁能一定取胜?他要取胜应采取什么策略?2.两人轮流报到。
规定每次报告的数字为不超过8的自然数。
把这两个人报告的数字加起来。
谁先向88报到谁就赢。
问:对于那些先报告的人来说,有什么制胜策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。
先移者确保获胜的方法是什么?例2:有1987粒棋子。
甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。
各种各样千奇百怪的问题,都会出现在孩子对奥数进行学习的过程中,其中包括方法技巧问题,也包括心理上面的问题。
家长如何引导孩子去直面这类问题,从而进行最好的解决呢?以下是领先课外辅导机构著名奥数专家对这一系列问题的解答:问题一:家长不是奥数高手,如何配合老师的教学?很多辅导机构有一个传统就是希望孩子们给听完一次课后,能够回家给家长讲题。
这样做有两个好处:让家长更好的了解孩子学习的情况;孩子再一次复习当天学习的内容。
切记——学习的主体是学生。
问题二:孩子在课堂完成作业还不错,但回家做题畏难情绪高,依赖思想严重。
这是一个普遍的现象,稍许的畏难情绪并没有什么大碍。
孩子如果每天都积累一些难题无法解决,时间长了畏难情绪会越来越严重。
长期如此就会严重地影响学习。
我觉得当孩子做题遇到困难时,家长可以想办法争取当日解决。
我们不怕出现问题,怕的是积累问题。
问题三:如何进行各知识点之间的串联,在头脑中建立奥数的理论体系?这个主要是老师的任务。
孩子们现在年龄还小学习的时间也短很难建立完整的奥数理论体系。
但是作为“过来人”的老师一定对这些问题有所认识。
随着学习时间的增长知识的积累,六年级的孩子还是有可能有自己归纳的一套东西的。
问题四:奥数对初中学习以至今后的数学学习的具体好处?如果单纯的讲奥数,绝对是个好东西。
一般人不觉得奥数好是因为一般人学不透。
奥数在开拓思维训练思维能力方便还是很有用的。
把脑袋练的异常聪明,对什么事情没有帮助呢?问题五:题目和知识点割裂严重,不能匹配,不点不会做题,只要点一下就下笔如有神。
奥数的精髓就在于那个“点”。
不是题目和知识点严重割裂,而是我们还没有练出来“火眼金睛”。
我们看过很多经验丰富的老师,曾经多次目睹他们秒杀极难的奥数题。
道行上我们还需要继续修炼。
问题六:奥数学习对孩子思维拓展和今后的学习有什么作用?这么说吧,奥数学的好的不一定能成为数学家,但是数学家学奥数一定能学得好。
问题七:怎样培养孩子学习奥数的兴趣,家长如何引导孩子养成良好的数学学习习惯?答:现阶段还是需要依靠老师,老师要让孩子在学习中感受到快乐。
小学奥数精讲——对策问题
告诉你本讲的重点、难点
对策问题涉及的课本知识并不多,只是技巧性比较强,诀窍是控制,往往在游戏中运用较多,而用数学的观点和方法来研究取胜策略就是对策问题.
看老师画龙点晴,教给你解题诀窍
【例1】桌上放着100根火柴棒,甲、乙二人轮流取,每次取1—3根,规定谁取到最后1根谁获胜.假定双方都采用最佳方法,甲先取,谁一定获胜?给出一种获胜方法.
分析与解我们可以从结果想起,谁能让火柴棒最后剩4根,谁就获胜.这是因为对方不论拿走几根,剩下的必能一次拿完,依照这个原则,只要让剩下的火柴棒的根数是4的倍数,就可以保证获胜.由于100就是4的倍数,所以后取的人获胜.
100÷(3+1)=25(没有余数)
答:乙后取一定获胜.如果甲拿n根,乙就拿(4-n)根,这样乙一定可以拿到最后1根而获胜.【例2】有一排500个空格’预先在左边第1格中放一枚棋子,然后由甲、乙两人轮流走.甲先乙后.每人走时,可以将棋子向右移动1~6格,规定谁将棋子走到最后1格谁输.甲为了必胜,第一步走几格?以后怎样走?
分析与解本题要注意两个问题,一是在左边的第1格中已经有一枚棋子,空格只有499个;二是谁走到最后1格谁输,那么,要控制取胜就必须保证自己能将最后1格留给对方,自己就要能走到倒数第二格中.这样一共能走的格子数只有500-1-1=498格.498÷7=71...1.
所以,甲第一步走1格,以后,乙走n格,甲就走(7-n)格,甲一定获胜.
【例3】甲、乙二人轮流在黑板上写1~10的自然数,规定不能在黑板上写已写过的数的因数,并不重复,最后无数可写的人失败.如果甲先写,双方都采用最佳方案,那么谁一定获胜?给出一种获胜方法.
分析与解甲先写,甲一定获胜,甲必须先写6,这样6的因数1,2,3,6就不能再写了.将剩下的六个数分为4和5,7和9,8和10三组,当乙写这六个数中的某数时,甲就写与它同组的另一数,必可获胜.
【例4】在一个3×3的方格纸(右图)中,甲、乙两人轮流往方格中写1,3,4,5,6,7,8,9,10这九个数中的一个,数字不能重复.最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜.请你为甲找出一种必胜的方法.
分析与解由于甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,所以四个角的方格里所填的数是公用的,真正决定甲乙得分的是a,b,c,d这四个位置.甲要想必胜,要把最小的数。
1”填入对方的方格里(6或d),这时,就算乙把10填入自己的方格内,两个格子里的数的和是11,这时甲把9填入自己的格子里(a或c),这样,a,c的和至少是12(即9十3),甲必胜.
【例5】甲、乙二人依次在一个正十边形中画对角线(即两个不相邻顶点的连线).规定新画的对角线不能与已经画了的对角线相交,谁画下最后一条这样的对角线谁就胜.甲先画,他怎样画才能取胜?
分析与解图形共有10个顶点,甲画第一条对角线,使得对角线两侧各有4个顶点,也就是说,将正10边形分成对称的两部分(如右图).以后,无论乙怎样画,甲都在另一部分对称地画,如右图中的两条虚线.只要乙能画,甲必能画,所以最后一条对角线必是甲画的,甲胜.
做题也有小窍门噢!
二人对策的诀窍就是控制,我们虽然不能控制别人的操作,但有时可以控制两人操作的和是一个固定的数,有时可以控制使每次操作之后局面处于对称状态.
快来试一试你的身手吧!
1.小明和小刚两人做一种游戏:轮流报数,必须报不大于2的自然数,把两人报出的数依次加起来,谁报数后加起来的数是60,谁就获胜.假定双方都采用最佳方法,如果小明先报,谁一定获胜?给出获胜方法.
2.有一摞200本的图书,一次可以取走1本、2本或3本,小敏和小华轮流取,规定谁取到最后l本谁输,假定双方都采用最佳方法,小华想获胜应采取怎样的方案?
3.在一个3×3的方格纸(右图)中,甲、乙两人轮流往方格中写1,2,3,4,5,6,7,8,10这九个数中的一个,数字不能重复.最后甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分少者为胜,请你为甲找出一种必胜的方法.
4.黑板上写着一排相连的自然数1,2,3,…,51.甲、乙两人轮流划掉连续的3个数.规定在谁划过之后另一人再也划不成了,谁就算取胜.甲有必胜的策略吗?
通往初中名校的班车
1.小明骑在牛背上赶牛过河,共有甲、乙、丙、丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河.问:要把四头牛都赶到对岸去,最少需要多长时间?
2.有16个不同国家的集邮爱好者,想通过邮寄的方法相互交换各国最近发行的邮票,使得每人都有这16个国家的邮票,这16人之间总共至少要通信多少封?
3.取两堆石子,分别有100粒和110粒,游戏双方轮流从其中的任意一堆拿走一粒或几粒石子(甚至把一堆石子一次拿完),但是每次不准一粒不拿,也不准从两堆中各拿几粒,谁最后一次把剩下的所有石子拿完,谁就能获胜,如果你与同伴玩这个游戏,有必胜的策略吗?
4.桌上放着101根火柴棒,甲、乙二人轮流取,每次取1根、3根或7根,规定谁取到最后一根谁获胜,假定双方都采用最佳方法,甲先取,谁一定获胜?给出一种获胜方案.。