化工原理板框过滤实验
- 格式:ppt
- 大小:310.50 KB
- 文档页数:20
浙江科技学院实验报告课程名称:化工原理实验名称:恒压过滤常数测定实验学院:生物与化学工程学院专业班:化学工程与工艺111 姓名:王建福学号:5110420006同组人员:杨眯眯张涛实验时间: 2013 年11月14日指导教师:诸爱士一、实验课程名称:化工原理二、实验项目名称:恒压过滤常数测定实验 三、实验目的和要求:1.熟悉板框压滤机的构造和操作方法;2.通过实验,验证过滤基本原理;3.学会测定过滤常数K 、q e 、τe 及压缩性指数S 的方法;4.了解操作压力对过滤速率的影响。
四、实验内容和原理实验内容:测定时间与滤液量的变化关系,绘制相关图表,求出过滤常数K 及压缩性指数S 。
实验原理:过滤是以某种多孔物质作为介质来处理悬浮液的操作。
在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。
过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。
影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为:Lpa K u μεε∆-=223')1(1 (1)u :过滤速度,m/s K ’:康采尼常数,层流时,K ’=5.0 ε:床层空隙率,m 3/m 3 μ:滤液粘度,Pasa :颗粒的比表面积,m 2/m 3△p :过滤的压强差,PaL :床层厚度,m恒压过滤时,令k=1/μr ’v ,K=2k △p 1-s ,q=V/A ,q e =Ve/A ,对(2)式积分得:(q+q e )2=K(τ+τe ) (3)K 、q 、q e 三者总称为过滤常数,由实验测定。
对(3)式微分得: 2(q+q e )dq=Kdτe q Kq K dq d 22+=τ (4)用△τ/△q 代替dτ/dq ,在恒压条件下,用秒表和量筒分别测定一系列时间间隔△τi ,和对应的滤液体积△V i ,可计算出一系列△τi 、△q i 、q i ,在直角坐标系中绘制△τ/△q ~q 的函数关系,得一直线,斜率为2/K ,截距为2q e /K ,可求得K 和q e ,再根据τe =q e 2/K ,可得τe 。
板框过滤实验报告————————————————————————————————作者:————————————————————————————————日期:实验五 过滤实验1 实验目的1.1 了解板框过滤机的构造、流程和操作方法。
1.2 测定某一压力下过滤分内工程中的过滤常熟K 、q e 、τe 值,增进对过滤理论的理解。
1.3 测定洗涤速率与最终过滤速率间的关系。
2 实验原理2.1 过滤是以某种多孔物质为介质,在外力的作用下,使悬浮液中的连续相液体通过介质的孔道,分散相固体颗粒被截留在介质上,从而实现固/液分离的操作。
液体通过过滤介质和滤饼空隙的流动是流体经过固定床流动的一种具体情况,但过滤操作中的床层厚度不断增加,在一定压差下,滤液通过床层的速率随过滤时间的延长而减小,即过滤操作不属于定态过程。
在恒压过滤时,由于滤饼的增厚,过滤速率将随过滤时间的增加而降低。
对滤饼的洗涤过程,由于滤饼厚度不再增加,压差与速率的关系与固定床相同。
恒压过滤方程:()()sV ssm K m A m V m V KA V V e e e e e 的过滤时间,相当于得到滤液:过滤时间,:过滤常数,:过滤面积,即虚拟滤液体积,滤渣时得到的滤液量,:形成滤布阻力的一层时间内获得的滤液量,:在:/223322τττττ+=+上式两边除以A 2得()()23232//,m m AVq m m A V q K q q e e e e 量滤液量,,单位过滤面积上的当,单位过滤面积的滤液量==+=+ττ2.2 测定K 、q e 、τe :测与一系列的△τ、△q 值,然后以△τ/△q 为纵坐标,以q 为横坐标作图,即可以得到一条斜率为K 2,截距为q K2的直线,则可以算出K 、q e 的值;再以q=0,τ=0代入式子()()e e K q q ττ+=+2,便可以求出τe。
2.3 测定洗涤速率与最终过滤速率 洗涤速率:sm V V d dV w w ww w 洗涤时间,洗液量,::3τττ=⎪⎭⎫⎝⎛最终过滤速率:()()2332/:22m m q m V q q K V V KA d dV e e E 总量,位过滤面积所得的滤液整个过滤时间内通过单的滤液总量,:整个过滤时间内所得+=+=⎪⎭⎫⎝⎛τ3 实验流程图1 实验装置流程图1-空气压缩机;2-配浆槽;3-压力表;4-贮浆罐;5-洗水罐;6-板框压滤机;7-计量桶;8-压缩空气进气阀;9-空气过滤减压阀;10-进浆阀;11、12-压缩空气进口阀;13-进水阀;14-安全阀;15-洗水进口阀;16-滤浆进口阀;17-滤液出口阀;18-滤浆出口阀8 3 9 4 14 × ×× 6 13 17× ×4 实验步骤4.1 将碳酸镁在储浆槽中加水配制成5.3%的悬浮液作滤浆,并在启动空压机前不停地搅拌,防止固体沉淀;4.2 按板、框的钮数为1-2-3-2-1-2-3-2-1的顺序排列号板框过滤机。
实验五 板框过滤实验一、实验目的1.了解板框过滤机的构造和操作方法;2.测定恒压过滤方程式中的过滤常数K 、e q 及e θ。
二、基本原理板框过滤是把液—固混合物的滤浆在一定压强下送入两侧覆有过滤介质(滤布)的滤框内,滤液通过滤布流走,固体物(滤渣)被滤布截留在框内。
板框过滤有恒压过滤和恒速过滤两种操作方式,过滤时固体颗粒不断被截留,介质表面慢慢形成滤饼并逐渐变厚,滤液通过滤饼的阻力也随之增加,如果保持过滤速率不变,就要不断增加介质两侧压差,此即恒速过滤;反之介质两侧压差不变,过滤速率随着滤饼增厚而减小,此即恒压过滤。
本实验做恒压过滤操作。
恒压过滤的基本方程式为:)()(22e e KA V V θθ+=+令:A V q =,A V q ee =则上式可改写为: )()(2e e K q q θθ+=+其微分式为:θKd dq q q e =+)(2即: eq K q Kdq d 22+=θ 上式的倒数式用增量代替则可写出近似式:e q K q K q 22+=∆∆θ以上各式中:θ——过滤时间,s ;V ——θ时间内所得的滤液量,m 3; V e ——过滤介质的当量滤液量,m 3; θe ——相当滤液量V e 所需过滤时间,s ; A ——过滤面积,m 2; K ——过滤常数。
上式为一直线方程,在笛卡尔坐标上作图,其斜率为K 2,截距为eq K 2。
三、实验装置实验装置及流程如下图所示,主要设备为板框过滤机、配浆槽、储浆罐、水洗罐、计量筒、空气压缩机等。
滤浆在配浆槽中配制好后送入储浆罐,一边搅拌一边用压缩空气送至过滤机过滤,过滤前先把过滤机按规定加上滤布组装好,过滤完毕再用水洗涤滤饼一次。
板和框的构造见附图所示,1钮板叫滤板,2钮板叫滤框,3钮板为洗涤板。
滤框空间尺寸为170×170×20mm (四角扇形半径为40mm )。
四、实验步骤首先熟悉实验设备、流程,搞清各个阀门的用途、操作方法,在此基础上按以下步骤进行实验:⒈检查所有阀门均处于关闭状态;⒉把滤布浸湿,在2钮滤框两侧对准孔道平整地铺好,板与框按1-2-3-2-1的次序排列组装好,用顶丝杠压紧;⒊水洗罐加水至32液面;⒋启动空气压缩机,使减压阀前压力保持在3kgf/cm 2以上备用;⒌一切准备就绪后,用橡胶塞堵住配浆槽底部出口,向槽内加水40kg 及MgCO 31.5kg配制滤浆液(浓度3~5%Wt ),不断地搅拌均匀;⒍打开储浆罐的放空阀,把配制好的滤浆全部送入储浆罐,同时开动搅拌机搅拌,关闭进浆阀和放空阀;⒎把压缩空气送入储浆罐,维持0.5kgf/cm 2压力,打开过滤机上滤浆和滤液的进出口阀①、③、④,进行过滤,与此同时用秒表不停地计量滤液流出量(每隔一个容积单位记一次时间),直至滤液停止流出为止,然后关闭阀①、③、④;⒏把储浆罐剩余滤浆卸出备用,把压缩空气送入水洗罐,打开过滤机水洗进出口阀②、④,进行滤饼水洗操作,洗液流出1000ml 即可停止;⒐水洗完毕,打开过滤机,取出滤饼,洗净滤布、滤框,中心组装好过滤机并压紧,改变过滤压力,重复5~9的操作过程;⒑实验完毕,用水洗罐的水(加压缩空气)冲洗储浆罐液面管及其他输液管道,以免MgCO 3沉淀堵塞;⒒关闭空气压缩机,清扫场地,整理好实验设备。
恒压过滤实验一、 实验目的1、熟悉板框压滤的构造和操作方法;2、测定恒压过滤方程中的常数。
二、 实验原理板框压滤是间歇操作。
一个循环包括装机、压滤、饼洗涤、卸饼和清洗五个工序。
板框机由多个单元组合而成,其中一个单元由滤板、滤框、洗板和滤布组成,板框外形是方形,板面有内槽以便滤液和洗液畅流,每个板框均有四个圆孔,其中两对角的一组为过滤通道,另一组为洗涤通道。
滤板和洗板又各自有专设的小通道。
图中实线箭头为滤液流动线路,虚线箭头则为洗液流动路线。
框的两面包以滤布作为滤面,滤浆由泵加压后从下面通道送入框内,滤液通过滤布集于对角上通道而排出,滤饼被截留在滤框内,如图1—1所示。
过滤完毕若对滤饼进行洗涤则从另一通道通入洗液,另一对角通道排出洗液,如图2-2-4-2b )所示。
图1—1 过滤和洗涤时液体流动路线示意图在过滤操作后期,滤饼即将充满滤框,滤液是通过滤饼厚度的一半及一层滤布而排出,洗涤时洗液是通过两层滤布和整个滤饼层而排出,若以单位时间、单位面积获得的液体量定义为过滤速率或洗涤速率,则可得洗涤速率约为最后过滤速率的四分之一。
恒压过滤时滤液体积与过滤时间、过滤面积之间的关系可用下式表示:·)()(22e e KA V V θθ+=+ (1)式中:V ——时间θ内所得滤液量[m 3]V e ——形成相当于滤布阻力的一层滤饼时获得的滤液量,又称虚拟滤液量[m 3] θ——过滤时间[s]θe ——获过滤液量V e 所需时间[s] A ——过滤面积[m 2] K ——过滤常数[m 2/s]若令:q=V/A 及q e =V e /A ,代入式(1)整理得:)()(2e e K q q θθ+=+ (2)式中:q ——θ时间内单位面积上所得滤液量[m 3/m 2] q e ——虚拟滤液量[m 3/m 2]^K 、q e 和θe 统称为过滤常数。
式(2)为待测的过滤方程,因是一个抛物线方程,不便于测定过滤常数。
板框及动态过滤实验报告北方民族大学学生实验报告院(部):化学与化学工程姓名:郭俊雄学号: 20192995 专业:化学工程与工艺班级: 081 同组人员:林艺明、胡鹏、秦开勉课程名称:化工原理实验实验名称:板框及动态过滤实验实验日期: 2019.12.19 批阅日期:成绩:教师签名:北方民族大学教务处制实验名称:板框过滤实验一、目的及任务1.熟悉板框过滤机的结构和操作方法;2.测定在恒压过滤操作时的过滤常数;3.掌握过滤问题的简化工程处理方法。
二、基本原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固、液得到分离的单元操作。
过滤操作本质上是流体通过固体颗粒床层的流动,所不同的是,该固体颗粒床层的厚度随着过滤过程的进行不断增加。
过滤操作可分为恒压过滤和恒速过滤。
当恒压操作时,过滤介质两侧的压差维持不变,则单位时间通过过滤介质的滤液量会不断下降;当恒速操作时,即保持过滤速度不变。
过滤速率基本方程的一般形式为:式中: V——τ时间内的滤液量,m3;Ve——过滤介质的当量滤液体积,它是形成相当于滤布阻力的一层滤渣所得的滤液体积,m3;A——过滤面积,m2;ΔP——过滤的压力降,Pa;μ——滤液粘度,Pa·s;v——滤饼体积与相应滤液体积之比,无因次;r′——单位压差下滤饼的比阻,1/ m2;s——滤饼的压缩指数,无因次。
一般情况下,s=0~1,对于不可压缩的滤饼,s=0。
恒压过滤时,对上式积分可得:式中: q——单位过滤面积的滤液量,q=V/A,m3/ m2; qe——单位过滤面积的虚拟滤液量,m3/ m2;K——过滤常数,即,m2/s。
对上式微分可得:该式表明dτ/dq~q为直线,其斜率为2/K,截距为2qe /K,为便于测定数据计算速率常数,可用Δτ/Δq替代dτ/dq,则上式可写成:将Δτ/Δq对q标绘(q取各时间间隔内的平均值),在正常情况下,各点均应在同一直线上,直线的斜率为2/K=a/b,截距为2qe/K=c,由此可求出K和qe。
实验三过滤实验(一)板框过滤实验本实验设备由我校化工原理实验室与天津大学化工基础实验中心共同研制。
该设备由过滤板、过滤框、旋涡泵等组成,是一种小型的工业用板框过滤机。
本套装置可进行设计型、研究型、综合型实验。
由于设备接近工业生产状况,通过实验可培养学生的工程观念、实验研究能力、设计能力以及解决生产实际问题的能力。
一、实验任务根据实验指导教师要求,从下列实验任务中选择其中一项实验。
1.板框压滤机选型:工业用过滤机选型的依据是物料的性能、分离任务和要求。
为使过滤机的选型最为恰当,通常是用同一悬浮液在小型过滤实验设备中进行实验,以取得必要的过滤数据作为主要依据,然后从技术和经济两方面进行综合分析,确定过滤机的种类和型号。
现有某一工厂需过滤含CaCO3 5.0~5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO3的密度为2930kg/m3。
工业过滤机在0.28MPa的压强差下进行过滤,规定每一操作循环处理悬浮液10m3,过滤时间为30min,滤饼不洗涤,过滤至框内全部充满滤渣时为止,卸饼、清洗、重装等辅助时间为20min。
请你利用实验室的小型板框压滤机(详见设备流程部分,该过滤机的最高过滤推动力(表压力)为0.2Mpa)进行实验,测定有关的过滤参数,根据表1所提供的过滤机型号与规格,从中选择一种合适型号的压滤机,并确定滤框的数目,求出该过滤机的生产能力,为工厂提供选型的技术依据。
表1 过滤机的型号与规格表1中板框压滤机型号如BMS20/635-25的意义为:B表示板框压滤机,M表示明流式(若为A,则表示暗流式),S表示手动压紧(若为Y,则表示液压压紧),20表示过滤面积为20m2,635表示滤框边长为635mm的正方形,25表示滤框的厚度为25mm。
2.回转真空过滤机设计:设计工业用过滤机时,必须先测定有关的过滤参数,这项工作一般是用同一悬浮液在小型过滤实验设备中进行。
现有某一工厂需过滤含CaCO 3 5.0 ~ 5.5 % 的水悬浮液,过滤温度为25℃,固体CaCO 3的密度为2930kg/m 3。
实验6板框过滤实验一、实验目的及任务1.熟悉板框过滤机的结构和操作方法;2.测定在恒压过滤操作时的过滤常数;3.掌握过滤问题的简化工程处理方法。
二、基本原理过滤是利用能让液体通过而截留固体颗粒的多孔介质(滤布和滤渣),使悬浮液中的固、液得到分离的单元操作。
过滤操作本质上是流体通过固体颗粒床层的流动,所不同的是,该固体颗粒床层的厚度随着过滤过程的进行不断增加。
过滤操作可分为恒压过滤和恒速过滤。
当恒压操作时,过滤介质两侧的压差维持不变,则单位时间通过过滤介质的滤液量会不断下降。
过滤速率基本方程的一般形式为:()Ve V v r P A d dV s+∆=-'12μτ 式中: V ——τ时间内的滤液量,m 3;Ve ——过滤介质的当量滤液体积,它是形成相当于滤布阻力的一层滤渣所得的滤液体积,m 3;A ——过滤面积,m 2;ΔP ——过滤的压力降,Pa ;μ——滤液粘度,Pa ·s ;v ——滤饼体积与相应滤液体积之比,无因次;r ′——单位压差下滤饼的比阻,1/ m 2;s ——滤饼的压缩指数,无因次。
一般情况下,s=0~1,对于不可压缩的滤饼,s=0。
恒压过滤时,对上式积分可得: ()()e e K q q ττ+=+2式中: q ——单位过滤面积的滤液量,q=V/A ,m 3/ m 2;q e ——单位过滤面积的虚拟滤液量,m 3/ m 2; K ——过滤常数,即vr P K s'21μ-∆=,m 2/s 。
对上式微分可得:Kq K q dq d e 22+=τ 该式表明d τ/dq ~q 为直线,其斜率为2/K ,截距为2q e /K ,为便于测定数据计算速率常数,可用Δτ/Δq 替代d τ/dq ,则上式可写成:Kq K q q e 22+=∆∆τ将Δτ/Δq对q标绘(q取各时间间隔内的平均值),在正常情况下,各点均应在同一直线上,直线的斜率为2/K=a/b,截距为2qe/K=c,由此可求出K和q e。
框板过滤实验报告本实验旨在研究框板过滤技术的效果,并对其原理和应用进行分析和总结。
实验原理:框板过滤是一种常见的固体-液分离方法,主要由框架、滤布和滤板组成。
其工作原理是将待处理的液体通过加压或抽真空的方式通过滤布,使固体颗粒被滤下,而液体则通过滤布流出,从而实现固液分离的目的。
实验过程和结果:我们选择了一种含有固体颗粒和液体的混合物进行实验。
首先,将混合物放入框板过滤器中,然后施加一定的压力,使混合物通过滤布。
经过一段时间的过滤,我们发现固体颗粒被滤下,而液体流出。
通过称量,我们可以准确测量出被过滤的固体质量和滤液的体积。
根据我们的实验数据,我们可以计算出框板过滤的过滤效率。
过滤效率可以通过固体颗粒在滤液中的质量比例来衡量。
我们发现,随着压力的增加,过滤效率也相应增加。
这是因为较高的压力可以使液体通过滤布更快,减少固体颗粒在滤液中的时间,从而提高过滤效率。
另外,我们还发现滤板的孔径大小对过滤效率也有一定的影响。
孔径较小的滤板可以更有效地阻止固体颗粒通过,因此具有更高的过滤效率。
实验总结:框板过滤是一种简单有效的固液分离方法。
它具有以下优点:操作简便、过滤效果好、易于维护和清洗。
因此,框板过滤在各个领域都有广泛的应用,包括化工、制药、食品加工等。
然而,框板过滤也存在一些局限性。
首先,过滤效率受到压力和滤板孔径的限制。
较低的压力和较大的孔径将导致过滤效率降低。
其次,过滤过程中可能出现堵塞或泄漏的问题,需要及时处理。
此外,过滤布需要定期更换,增加了成本和维护难度。
为了提高框板过滤的效率和可靠性,研究人员正在不断改进和创新。
一些新型的滤布材料和滤板结构已经应用到框板过滤器中,以提高过滤效率和延长使用寿命。
此外,自动化控制系统的引入也使框板过滤的操作更加便捷和可靠。
综上所述,框板过滤是一种重要的固液分离方法,具有广泛的应用价值。
通过对其原理和应用的研究,我们可以更好地了解和应用框板过滤技术。
然而,为了满足不同领域的需求,我们仍需持续研究和改进框板过滤技术,以提高其效率和可靠性。