复变函数-复函数
- 格式:pdf
- 大小:343.85 KB
- 文档页数:26
复变函数一、复数与复变函数1、w n =ZW=r 1/n [cos(θ+2ki πn )+isin(a +2ki πn )]其中k 取1、2、3、、、、、n-12、区域是开集,闭区域是闭集,除了全平面既是区域又是闭区域这一个特例外,区域与闭区域是两种不同的点集,闭区域并非区域。
3、单连通域:区域中没有洞和缝多连通域:区域中有洞或者缝二、解析函数1、解析函数:在z 0处可导,且在z 0的领域中可导。
2、解析函数的一个充分必要条件:函数f(x,y)=u(x,y)+iv(x,y),u(x,y)和v(x,y)在点(x,y)处可微,而且满足柯西——黎曼方程。
(C-R 方程)∂u ∂x =∂v ∂y ∂u ∂y =−∂v ∂xf(z) =∂u ∂x +i ∂v ∂x =∂v ∂y +i ∂v ∂x =∂u ∂x −i ∂u ∂y =∂v ∂y −i ∂u ∂yC-R 方程为函数f (z )可导的必要条件4、调和函数和共轭调和函数调和函数:二元实函数φ(x,y )在区域D 内有二阶连续偏导数,且满足二维拉普拉斯方程∂φ2∂x +∂φ2∂y =0 共轭调和函数:φ(x,y )及ρ(x,y)均在区域D 内的调和函数,且满足C-R 方程函数f(x,y)=u(x,y)+iv(x,y)在区域D 内解析的充分必要条件:在D 内u x,y 是v x,y 的共轭调和函数 5、初等函数指数函数:e iy =cosy+isinye z 是以2ki π为周期的周期函数对数函数:lnz=ln z +iargzLnz= ln z +iArgz= ln z +i(argz+2k π)Ln z 2≠2LnzLn z n ≠1n Lnz幂函数:z α=e αlnz α为正整数,函数为单值函数α=1n n 为正整数 有限值α=z 复数 无限个值三角函数:cosy=e iy +e −iy 2 siny=e iy −e −iy 2i 三、复变函数的积分1、常用的公式dz (z −z 0)n = 2πi n =1 0 n ≠1成立条件:a 、封闭区间的积分b 、z 0在封闭曲线C 的内部C 、被积函数分子为常数2、复合闭路定理3、闭路变形定理4、柯西——古萨定理设函数f (z )在单连通域D 内解析,则f (z )在D 内沿任意一条简单闭曲线C 的积分f z dz =05、柯西积分公式f(z)在简单闭曲线c 所围成的区域D 内解析,z 0为D 内任一点f(z 0)=12πi f(z)z −z 0dz 6、高阶导数公式f(z)在c 围成的D 内解析,f(z)的各阶导数均在D 内解析,z 0为D 内任一点f z 0(n )=n !2πi f(z)(z −z 0)dz7、计算积分的步骤a.分析奇点b.奇点在曲线的内部还是外部c.应用定理四、级数1、常见函数的级数e x =1+x +x 2+x 3+⋯,−∞<x <∞sinz= (−1)n ∞n=0z 2n +1 2n+1 ! e z = z n n!∞n=0cosz= (−1)n ∞n=0z 2n 2n !ln(1+z)= (−1)n ∞n=0z n +1n+111+z= (−1)n ∞n=0z n 11−z = z n ∞n=0 2、幂级数 只有 z −z 0 的正幂次项在其收敛域内可以为解析函数 收敛域:所要求的点到函数所有的孤立奇点最短的距离收敛半径:比值法、根值法函数在一点解析的充分必要条件:它在这点的领域可以展开为幂级数3、泰勒级数设函数f (z )在区域D 内解析,z 0为D 内的一点,R 为z 0到D 的边界上各点的最短距离,则当 (z −z 0) <R 时,f(z)可展开为幂级数。
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
数学中的复变函数及其应用复变函数理论是现代数学中的一个重要分支,它研究的对象是复数域中的函数,具有广泛应用。
在物理学、工程学、计算机科学等领域中,复变函数被广泛应用,特别是在电磁学、流体力学、信号处理等领域中,有着相当重要的地位。
一、复变函数基础复变函数是以复数为自变量,复数为函数值的函数,即f(z)=u(x,y)+iv(x,y),其中,u(x,y)和v(x,y)是实函数,并且满足柯西-黎曼方程组:$$\begin{cases}\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\\\\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}\end{cases}$$柯西-黎曼方程组的解析函数又称为全纯函数,是复变函数理论中的核心概念。
全纯函数在整个复平面上都有解析,这是测量、研究复数在平面中的绝佳工具。
二、复数域中的积分复变函数在复数域中的积分有很多重要性质,如柯西公式和柯西积分定理等。
①柯西公式:设f(z)在曲线C所包围的区域D上解析,则对于D中的任何点P,有$$f(P) = \frac{1}{2\pi i}\oint_C \frac{f(z)}{z-P} dz$$其中,z是曲线C上的变量。
柯西公式是复变函数中的重要公式,它可以推广到多重积分和各种数学和物理问题中。
②柯西积分定理:设f(z)在区域D内解析,则D内任意两条连接两点A和B的曲线积分相等:$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$其中,$\gamma_1$和$\gamma_2$分别是由A到B的两条可求长曲线。
柯西积分定理是复变函数理论中的重要概念,它不仅可以应用于计算积分,还可以用于研究物理问题的解析解等方面。
三、复变函数应用复变函数在电磁学、流体力学、信号处理、统计学等领域都有应用。
复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。
复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。
复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。
1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。
复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。
2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。
3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。
在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。
(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。
复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。