第三章 图像信号的正交变换.
- 格式:ppt
- 大小:256.00 KB
- 文档页数:30
图像的正交变换1、二维傅立叶变换一维时间信号,可以看作是由多个单一频率的正弦信号叠加而成的,表达组成信号的每个正弦信号的频率及其幅值的空间称为频率域。
信号在时间域与频率域之间通过傅立叶变换与逆变换进行转换。
求时间信号在频率轴上的幅值分布函数过程为傅立叶变换,而由信号的在频率轴上的幅值分布函数求解时间信号的过程为傅立叶逆变换。
一维傅立叶变换的定义:()()2j t X j x t e dt π+∞-Ω-∞Ω=⋅⎰一维傅立叶逆变换定义:()()2j t x t X j e d π+∞Ω-∞=Ω⋅Ω⎰Ω为频率变量,它的连续变化使()X j Ω包含了无限个正弦和余弦项的和。
根据尤拉公式exp[2]cos 2sin 2j t t j t πππ-Ω=Ω-Ω傅立叶变换系数可以写成如下式的复数和极坐标形式:()()()()()j X j R jI X j e ϕΩΩ=Ω+Ω=Ω其中1222[()()]()RI X j =Ω+ΩΩ定义为傅立叶谱(幅值函数)1()()tan []()I R ϕ-ΩΩ=Ω为相角 而222()()()()E X j R I Ω=Ω=Ω+Ω能量谱二维平面图像是一种幅值沿纵坐标和横坐标两个方向变化的信号,其变化规律的分析也在频率域进行。
二维信号的正交变换由一维信号的正交变换扩展而得到。
连续二维函数的傅立叶变换对定义二维函数的傅立叶正变换 ()()()⎰⎰∞∞-∞∞-+-=dxdy e y x f v u F vy ux j π2,, 二维函数的傅立叶逆变换 ()()()⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j π2,, 二维函数的傅立叶谱 21)],(),([),(22v u I v u R v u F +=二维函数的傅立叶变换的相角 ]),(),([tan ),(1v u R v u I v u -=φ 二维函数的傅立叶变换的能量谱),(),(),(),(222v u I v u R v u F v u E +==2二维离散傅立叶变换对于一维信号()x t 及其傅立叶变换()X j Ω均进行离散(数字化),则离散的傅立叶变换定义如下:一维离散傅立叶正变换()()()11exp 2N x X k x n j kn N N π-==-∑一维离散傅立叶逆变换()()()10exp 2N u x t X k j kn N π-==∑对于N M ⨯图象,其二维离散傅立叶变换定义为:()()∑∑-=-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=10102exp ,1,M x N y N vy M ux j y x f MN v u F π ∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(M N N M u v vy ux j v u F y x f π对于N N ⨯图象()()∑∑-=-=⎪⎭⎫ ⎝⎛+-=10122exp ,1,N x N y N vy ux j y x f Nv u F π∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(N N N u v vy ux j v u F y x f π1.3二维离散傅立叶变换的性质 性质1:线性性质如果:11(,)(,)f x y F u v ⇔ 22(,)(,)f x y F u v ⇔ 则有:()()()()v u bF v u aF y x bf y x af ,2,1,2,1+⇔+性质2:尺度性质1(,), 1(,)(,)u v f ax by F a b F x y F u v ab a b ⎛⎫⇔==-→--⇔-- ⎪⎝⎭当时,性质3:可分离性()()()()∑∑∑∑∑-=-=-=-=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=11102101022exp ,12exp ,2exp 12exp ,1,N x N x N y N x N y N ux j v x F NN vy j y x f N ux j N N vy ux j y x f Nv u F ππππ 二维傅立叶变换可分解成了两个方向的一维变换顺序执行。
实验三图像的正交变换一、实验目的1.了解傅立叶变换、离散余弦变换及其在图像处理中的应用2.了解Matlab线性滤波器的设计方法二、实验步骤1、打开MATLAB软件,设置工作路径,新建M文件。
2、将图片放到当前工作路径下3、写入图像正交变换(包括傅里叶变换、离散余弦变换)程序保存并调试运行。
程序具体要求:(1)傅立叶变换A) 绘制一个二值图像矩阵,并将其傅立叶函数可视化。
B) 利用傅立叶变换分析两幅图像的相关性,定位图像特征。
读入图像‘cameraman.tif’,抽取其中的字母‘a’。
( 2 ) 离散余弦变换(DCT)A)使用dct2对图像‘linyichen.jpg’进行DCT变换。
B)将上述DCT变换结果中绝对值小于10的系数舍弃,使用idct2重构图像并与原图像比较。
4、保存实验结果并完善实验报告。
三、实验程序1、傅立叶变换A)绘制一个二值图像矩阵,并将其傅立叶函数可视化。
f=zeros(30,30);f(5:24,13:17)=1;imshow(f,'notruesize')F=fft2(f);F2=log(abs(F));figure,imshow(F2,[-1 5],'notruesize');colormap(jet);F=fft2(f,256,256); %零填充为256×256矩阵figure,imshow(log(abs(F)),[-1 5],'notruesize');colormap(jet);F2=fftshift(F); %将图像频谱中心由矩阵原点移至矩阵中心figure,imshow(log(abs(F2)),[-1 5],'notruesize');colormap(jet);B)利用傅立叶变换分析两幅图像的相关性,定位图像特征。
读入图像‘cameraman.tif’,抽取其中的字母‘a’。