燃烧理论基础第五章概述
- 格式:ppt
- 大小:884.00 KB
- 文档页数:3
燃烧器设计技术手册第一章:燃烧器概述1.1 燃烧器的作用和应用领域燃烧器是一种用于将一种或多种燃料燃烧产生热能的装置,广泛应用于工业生产中的锅炉、热风炉、焚烧炉等设备中。
燃烧器的设计和性能直接影响到燃烧效率和环保性能。
1.2 燃烧器的分类依据燃烧器的工作原理和结构特点,可将燃烧器分为压力喷嘴燃烧器、旋风燃烧器、流化床燃烧器、多孔燃烧器等类型。
1.3 燃烧器的主要组成部分燃烧器主要包括燃烧器本体、点火装置、燃料输送系统、空气输送系统、调节系统和安全控制系统。
第二章:燃烧器设计原理2.1 燃烧理论基础介绍燃烧的化学过程和热力学原理,包括燃料与氧气的反应、燃烧传热等基础知识。
2.2 燃烧器设计参数讨论燃烧器设计中的主要参数,包括燃烧器功率、燃烧器效率、热效率、燃烧器稳定性等。
第三章:燃料选择与燃烧器匹配3.1 燃料物性及选择介绍各种常见的工业燃料的物理性质和燃烧特性,包括液体燃料、固体燃料和气体燃料。
3.2 燃烧器与燃料的匹配讨论燃烧器设计时需要考虑燃料的选择和燃烧器的适配性,使燃料能够充分燃烧,提高燃烧效率。
第四章:燃烧器结构设计4.1 燃烧器形式与结构介绍不同类型燃烧器的结构特点和设计原则,包括压力喷嘴燃烧器、旋风燃烧器、多孔燃烧器等。
4.2 燃烧器材料选择讨论燃烧器材料的选择原则和材料特性,包括耐热材料、耐腐蚀材料等。
第五章:燃烧器性能测试与调试5.1 燃烧器性能测试介绍燃烧器性能测试的方法和技术,包括燃烧效率测试、热效率测试、排放测试等。
5.2 燃烧器调试与优化讨论燃烧器在实际应用中的调试方法,包括点火调试、燃烧参数优化等。
第六章:燃烧器运行维护与安全管理6.1 燃烧器运行维护介绍燃烧器的日常运行维护方法,包括清洗、保养、损坏检修等。
6.2 燃烧器安全管理介绍燃烧器在运行过程中的安全管理知识,包括防火、防爆、泄漏处理等。
结语燃烧器设计技术手册涵盖了燃烧器的基本原理、设计流程、性能测试、调试与维护等方面的知识,对于燃烧器设计人员和生产运营人员具有重要的参考价值。
燃烧器设计技术手册第一章概述燃烧器是工业生产中常见的设备,其作用是将燃料和空气混合并点燃,产生热量。
燃烧器的设计和选型对于工业生产过程的能源利用效率、环境保护和安全性都有着重要的影响。
本手册旨在介绍燃烧器设计的基本原理、技术要点和实际应用,以便工程师和技术人员在燃烧器选择、设计和优化方面能够有所指导和帮助。
第二章燃烧器原理1. 燃烧理论基础介绍燃烧过程的基本原理,包括燃烧的化学反应、燃烧的热力学过程、燃料燃烧与空气混合的理论模型等。
2. 燃烧器分类介绍不同类型的燃烧器,包括锅炉燃烧器、工业燃烧器、热风炉燃烧器等,以及它们的特点和应用场景。
第三章燃烧器设计要点1. 燃料选择介绍不同种类的燃料的特点、适用范围和燃烧特性,以及在燃烧器选择和设计中的考虑因素。
2. 空气与燃料的混合讨论如何在燃烧器设计中实现燃料与空气的合理混合,以确保燃烧效率和节能。
3. 燃烧稳定性介绍燃烧器设计中保证燃烧稳定的技术手段和方法,以防止燃烧不稳定带来的问题。
4. 燃烧器热负荷计算介绍燃烧器设计中的热负荷计算方法,以确定燃烧器的适用范围和技术参数。
第四章燃烧器材料与结构设计1. 材料选择探讨在燃烧器设计中选择合适的材料的依据和方法,并介绍常用材料的特点和适用范围。
2. 结构设计介绍燃烧器的结构设计原则,包括外观结构、燃烧室设计、燃烧器头设计等方面的要点和技术注意事项。
第五章燃烧器安全与环保1. 安全防护措施探讨燃烧器设计与使用中的安全防护措施,包括防爆、防火、防失火等方面的技术要点和注意事项。
2. 环保要求介绍燃烧器设计中需要考虑的环保要求,包括排放控制、烟气净化、能源利用效率等方面的设计原则和技术措施。
第六章燃烧器性能测定与优化1. 性能测定方法介绍燃烧器性能测定的基本方法和技术手段,包括静态特性测试、动态特性测试、耐久性测试等方面的内容。
2. 优化方法探讨燃烧器优化设计的方法和技术手段,包括结构优化、燃烧参数优化、控制系统优化等方面的内容。
燃烧理论与技术》课程教学大纲课程编号:08211011课程类别:专业基础课程授课对象:能源与动力工程、热能工程、工程热物理、建筑环境等专业开课学期:第6学期学分:3学分主讲教师:王俊琪等指定教材:同济大学、重庆建筑大学等编,《燃气燃烧与应用(第三版)》,中国建筑工业出版社,2005年教学目的:通过对该课程的学习,使学生掌握有关燃气燃烧的基本知识,学会相应的燃气燃烧的计算方法,能够利用化学反应动力学原理解释相关的燃烧现象及燃烧的速度,理解不同气流的混合原理和燃气燃烧火焰的传播机理及传播速度的测定方法,深刻认识燃气各种燃烧的方法,并能利用流体力学、化学反应动力学原理分析各种燃烧方法的机理。
在此基础上,进一步掌握各种不同种类的燃烧器原理、构造及其设计原理与方法,深入理解有关民用燃气用具、燃气工业炉窑的类型、结构,并能进行有关设计计算和热力计算。
第一章燃气的燃烧计算课时:1周,共3课时教学内容第一节燃气的热值一、燃烧及燃烧反应计量方程式燃烧的定义与条件;不同燃烧反应的计量方程式。
二、燃气热值的确定燃气低热值和高热值的定义及其计算方法;混合气体热值的计算。
第二节燃烧所需空气量一、理论空气需要量理论空气量的概念;理论空气量的精确计算方法和近似计算方法。
二、实际空气需要量实际空气量和过剩空气系数的概念;常用设备的过剩空气系数。
第三节完全燃烧产物的计算一、烟气量烟气的主要成分;按烟气组分计算的理论及实际烟气量;根据燃气的热值近似计算不同燃气的烟气量。
二、烟气的密度烟气密度的计算。
第四节运行时烟气中的CO含量和过剩空气系数一、烟气中CO含量的确定烟气中CO含量确定的方法及公式;燃气是否完全燃烧的判别式;工业中常用的RO2的计算方法。
二、过剩空气系数的确定完全燃烧和不完全燃烧时过剩空气系数的确定方法。
第五节燃气燃烧温度及焓温图一、燃烧温度的确定热量计温度和理论燃烧温度的概念及计算公式;影响理论燃烧温度的具体因素分析。
《燃烧学》课程笔记第一章燃料与燃烧概述一、燃烧学发展简史1. 古代时期- 早期人类通过摩擦、打击等方法产生火,火的使用标志着人类文明的开始。
- 古埃及、古希腊和古罗马时期,人们开始使用火进行冶炼、烹饪和取暖。
2. 中世纪时期- 炼金术的兴起,炼金术士们试图通过燃烧和其他化学反应来转化金属。
- 罗杰·培根(Roger Bacon)在13世纪对火进行了研究,提出了火的三要素理论:燃料、空气和热。
3. 17世纪- 法国化学家安托万·洛朗·拉瓦锡(Antoine Lavoisier)通过实验证明了燃烧是物质与氧气的化学反应,推翻了燃素说。
- 拉瓦锡的氧化学说为现代燃烧理论奠定了基础。
4. 18世纪- 约瑟夫·普利斯特里(Joseph Priestley)和卡尔·威廉·舍勒(Carl Wilhelm Scheele)分别独立发现了氧气。
- 拉瓦锡和普利斯特里的实验揭示了氧气在燃烧过程中的作用。
5. 19世纪- 热力学第一定律和第二定律的发展,为理解燃烧过程中的能量转换提供了理论基础。
- 化学反应动力学的发展,科学家们开始研究燃烧反应的速率和机理。
6. 20世纪- 燃烧学作为一门独立学科得到发展,研究内容包括火焰结构、燃烧污染物生成与控制等。
- 计算流体力学(CFD)的应用,使得燃烧过程的模拟和优化成为可能。
- 环保意识的提高,促进了清洁燃烧技术和低污染燃烧技术的发展。
二、常见的燃烧设备1. 炉子- 锅炉:用于发电和工业生产中的蒸汽供应。
- 炉灶:家用烹饪设备,使用天然气、液化石油气等作为燃料。
- 热水器:利用燃料燃烧产生的热量加热水。
2. 发动机- 内燃机:汽车、摩托车等交通工具的动力来源。
- 燃气轮机:用于飞机、发电厂等,具有较高的热效率。
3. 焚烧炉- 医疗废物焚烧炉:用于医院废物的无害化处理。
- 城市生活垃圾焚烧炉:用于垃圾减量和资源回收。