锅炉原理-第五章-煤粉燃烧理论基础及燃烧设备资料
- 格式:ppt
- 大小:8.48 MB
- 文档页数:8
煤粉炉燃烧原理及燃烧设备第一节燃烧化学反应动力学基础燃烧一般是指燃料与氧化剂进行的剧烈化学反应。
燃料与氧化剂可以是同一形态的,如气体燃料在空气中的燃烧,称为单相(均相)燃烧;燃料与氧气剂也可以是不同形态的,如固体燃料在空气中的燃烧,称为多相燃烧。
电厂锅炉的主要燃料是煤,使用空气作燃料的氧化剂。
电厂锅炉的主要燃料是煤使用空气作燃料的氧化剂一、碳粒的燃烧过程和燃烧速度炭粒表面的多相燃烧大致包括如下几个过程炭粒表面的多相燃烧大致包括如下几个过程:(1)参加燃烧的氧从周围环境扩散到炭粒的反应表面;(2)氧被炭粒表面吸附;(3)在炭粒表面进行燃烧化学反应;(4)燃烧产物由炭粒表面解吸附;(5)燃烧产物离开炭粒表面,扩散到周围环境中。
炭粒燃烧速度是指炭粒单位表面上的实际反应速度,它取决于上述过程中进行得最慢的过程。
碳的燃烧速度主要决定于氧向炭粒表面的扩散速度和在反应表面上进行的化学反应速度最终决定于两者中的较慢者速度,最终决定于两者中的较慢者。
(吸附和解吸附过程速度快)1、影响化学反应速度的因素(1)浓度对化学反应速度的影响化学反应是在一定条件下反应物分子之化学反应是在一定条件下,反应物分子之间彼此碰撞而产生的,分子在单位时间内的碰撞次数越多则化学反应速度越快的碰撞次数越多,则化学反应速度越快。
分子碰撞次数决定于单位容积中反应物的分子数,即物质浓度。
在定温度下反应容积不变增加反应在一定温度下,反应容积不变,增加反应物的浓度即可增加反应物的分子数,分子之间的碰撞次数就会增多,反应速度就会加快。
加快(2)压力对化学反应速度的影响分子运动论认为,气体压力是气体分子撞击容器壁面的结果。
在温度和容积不变的条件下,反应物压力高,意味着反应物浓度大,因此化学反应速度就快。
(3)温度对化学反应速度的影响阿累尼乌斯定律反映的是温度对化学反应速度影响的规律。
阿累尼乌斯定律反映的是温度对化学反应速度影响的规律化学反应是在一定条件下,反应分子间发生碰撞而发生的,应在条件应发生撞发生的但并不是所有碰撞的分子都可以发生反应,只有那些碰撞能量足以破坏现存化学键并建立新的化学键的碰撞才是有效的。
第五章 煤粉燃烧的理论基础和燃烧设备(一)教学要求1.掌握炭粒的三个燃烧区域,理解影响燃烧反应的化学因素和物理因素2.掌握煤粉气流着火的影响因素和完全燃烧的条件3.了解直流射流的特性,理解直流燃烧器的结构型式及其布置情况4.了解旋流射流的特性,理解旋流燃烧器的结构型式及其布置情况5.了解W 型火焰燃烧技术(二)重点和难点重点:1.炭粒燃烧的动力燃烧区、扩散燃烧区、过渡燃烧器三个区域2.煤粉气流着火的影响因素3.煤粉完全燃烧的条件难点:1.直流燃烧器的结构型式及其布置情况2. 旋流燃烧器的结构型式及其布置情况(三)教学方式课堂讲授、多媒体教学结合课堂讨论及现场模型讲授(四)教学内容第一节 燃烧的基本理论复习几种热损失。
为了减小热损失,锅炉燃烧需要作到:稳定着火、快速燃尽。
为实现该目的,需寻找强化燃烧的方法,这就要认识燃烧过程的本质。
从而,需要学习基础燃烧理论。
燃烧是气体、液体或固体燃料与氧化剂之间发生的一种强烈的化学反应;同时伴随各种物理过程燃烧反应根据参加反应的物质不同分为:一、化学反应速度某一反应物浓度的减少速度或生成物浓度的增加速度表示。
1.浓度浓度越大,反应速度越快。
质量作用定律:对于均相反应,在一定温度下化学反应速度与参加反应的各反应物的浓度乘积成正比,而各反应物浓度项的方次等于化学反应式中相应的反应系数。
对于异相反应:化学反应在炭粒表面进行,认为碳粒浓度不变,化学反应速度指单位时间内碳粒表面上氧浓度的变化。
质量作用定律说明:在温度不变的情况下,反应物的浓度越高,分子的碰撞hH gG bB aA +→+b B a A C kC w =b B B kC w =机会越多,化学反应速度就越快。
2.温度阿累尼乌斯定律:温度增加,反应速度近似成指数关系增加,体现在反应速度常数。
反应物浓度不变时,反应速度常数k 随温度变化的关系3.压力在反应容积不变的情况下,反应系统压力增高,就意味着反应物浓度增加,化学反应速度增加。