高等数学 第八章 第3节 全微分及其应用(中央财经大学)
- 格式:pdf
- 大小:1.52 MB
- 文档页数:35
§8.3 全微分及其应用一、全微分的定义根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )为函数对x 的偏增量, f x (x , y )∆x 为函数对x 的偏微分; f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )为函数)对y 的偏增量, f y (x , y )∆y 为函数对y 的偏微分. 全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之. 定义 如果函数z =f (x , y )在点(x , y )的全增量∆z = f (x +∆x , y +∆y )-f (x , y )可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分. 可微与连续: 可微必连续, 但偏导数存在不一定连续.这是因为, 如果z =f (x , y )在点(x , y )可微, 则∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ),于是 0lim 0=∆→z ρ, 从而 ),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ. 因此函数z =f (x , y )在点(x , y )处连续.可微条件:定理1(必要条件)如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、y z ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为 y yz x x z dz ∆∂∂+∆∂∂=. 证 设函数z =f (x , y )在点P (x , y )可微分. 于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A x y x f y x x f x =∆-∆+→∆),(),(lim 0, 从而偏导数x z ∂∂存在, 且A xz =∂∂. 同理可证偏导数y z ∂∂存在, 且B y z =∂∂. 所以 y yz x x z dz ∆∂∂+∆∂∂=. 简要证明: 设函数z =f (x , y )在点(x , y )可微分. 于是有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A x x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim 00, 从而x z ∂∂存在, 且A xz =∂∂. 同理y z ∂∂存在, 且B y z =∂∂. 所以y y z x x z dz ∆∂∂+∆∂∂=. 偏导数x z ∂∂、yz ∂∂存在是可微分的必要条件, 但不是充分条件. 例如,函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0,但函数在(0, 0)不可微分, 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小. 这是因为当(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x .定理2(充分条件)如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数.按着习惯, ∆x 、∆y 分别记作dx 、dy , 并分别称为自变量的微分, 则函数z =f (x , y )的全微分可写作dy yz dx x z dz ∂∂+∂∂=.第 3 页 共 5 页二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u =f (x , y , z ) 的全微分为 dz zu dy y u dx x u du ∂∂+∂∂+∂∂=. 例1 计算函数z =x 2y +y 2的全微分.解 因为xy xz 2=∂∂, y x y z 22+=∂∂, 所以dz =2xydx +(x 2+2y )dy .例2 计算函数z =e xy 在点(2, 1)处的全微分.解 因为xy ye xz =∂∂, xy xe y z =∂∂, 212e x z y x =∂∂==, 2122e y z y x =∂∂==, 所以 dz =e 2dx +2e 2dy .例3 计算函数yz e y x u ++=2sin 的全微分. 解 因为1=∂∂xu , yz ze y y u +=∂∂2cos 21, yz ye z u =∂∂, 所以 dz ye dy ze y dx du yz yz +++=)2cos 21(. *二、全微分在近似计算中的应用当二元函数z =f (x , y )在点P (x , y )的两个偏导数f x (x , y ) , f y (x , y )连续, 并且|∆x |, |∆y |都较小时, 有近似等式∆z ≈dz = f x (x , y )∆x +f y (x , y )∆y ,即 f (x +∆x , y +∆y ) ≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y .我们可以利用上述近似等式对二元函数作近似计算.例4 有一圆柱体, 受压后发生形变, 它的半径由20cm 增大到20. 05cm , 高度由100cu 减少到99cm . 求此圆柱体体积变化的近似值.解 设圆柱体的半径、高和体积依次为r 、h 和V , 则有V =π r 2h .已知r =20, h =100, ∆r =0. 05, ∆h =-1. 根据近似公式, 有∆V ≈dV =V r ∆r +V h ∆h =2πrh ∆r +πr 2∆h=2π⨯20⨯100⨯0. 05+π⨯202⨯(-1)=-200π (cm 3).即此圆柱体在受压后体积约减少了200π cm 3.例5 计算(1. 04)2. 02的近似值.解 设函数f (x , y )=x y . 显然, 要计算的值就是函数在x =1.04, y =2.02时的函数值f (1.04, 2.02).取x =1, y =2, ∆x =0.04, ∆y =0.02. 由于f (x +∆x , y +∆y )≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y=x y +yx y -1∆x +x y ln x ∆y ,所以(1.04)2. 02≈12+2⨯12-1⨯0.04+12⨯ln1⨯0.02=1.08.例6 利用单摆摆动测定重力加速度g 的公式是224Tl g π=. 现测得单摆摆长l 与振动周期T 分别为l =100±0.1cm 、T =2±0.004s. 问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少?解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |, 则利用上述计算公式所产生的误差就是二元函数224Tl g π=的全增量的绝对值|Δg |. 1|Δl |, |ΔT |都很小, 因此我们可以用dg 来近似地代替Δg . 这样就得到g 的误差为||||||T Tg l l g dg g ∆∂∂+∆∂∂=≈∆ T l Tg l g δδ⋅∂∂+⋅∂∂≤|||| )21(4322T l Tl T δδπ+=, 其中δl 与δT 为l 与T 的绝对误差. 把l =100, T =2, δl =0.1, δT =0.004代入上式, 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg )/(93.45.022s cm ==π.002225.0210045.0=⨯=ππδg g. ∈ β∏⎪∑ 0, ⎤ ,X⎬πz =f (x, y ), 如果自变量x 、y 的绝对误差分别为δx 、δy , 即|Δx |≤δx , |Δy |≤δy ,则z 的误差 ||||||y yz x x z dz z ∆∂∂+∆∂∂=≈∆第 5 页 共 5 页 ||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤ y x y z x z δδ⋅∂∂+⋅∂∂≤||||; 从而得到z 的绝对误差约为 y x z y z x z δδδ⋅∂∂+⋅∂∂=||||; z 的相对误差约为y x z z y z z x z z δδδ∂∂+∂∂=||.。
第三节 全微分及其应用
一、全微分
二、全微分在近似计算
中的应用
d d tan x
y
=α
沿此曲线计算的函数在点P 处的增量为偏增量
z x∆
多元函数的全增量
运用多元函数的全增量概念,将一元函数的微分概念推广到多元函数中.
应用的某一个
线性函数表示二元函数的全增量y x ∆∆ ,:
z ∆α
+∆+∆=−∆+∆+=∆y b x a y x f y y x x f z ),() ,(, ,无关的常数和是与y x b a ∆∆.
应该是一个无穷小量α
二元函数全微分的定义
全微分概念的极限形式
函数在区域上的可微性
如果函数)
f在区域Ω中的
(X
每一点均可微, 则称函数在区域Ω
上可微 .
可微
连续可导
连续:0lim 0
0=∆→∆→∆z y x 可微:
+∆=∆x a z +∆y b )o(2
2y x ∆+∆什
么?
可微
连续可导
可微
连续可导
可微
连续可导
逆命题?
可 微
连续可导连 续可 导
连续可导Ok
f
,0(),(≠y x
f
二、全微分在近似计算中的应用
例5 计算
的近似值. 解.
),(y x y x f =设函数.02.0,04.0,2,1=∆=∆==y x y x 取,
1)2,1(=f ∵,),(1−=y x yx y x f ,ln ),(x x y x f y
y =,
2)2,1(=x f ,0)2,1(=y f 由公式得02.0004.021)04.1(02.2×+×+≈.
08.1=
谢谢大家!。