福大高数微积分作业答案6.3全微分
- 格式:ppt
- 大小:164.50 KB
- 文档页数:4
《高等数学教程》第十章 多元函数微分法 习题参考答案10-1 (A)1.)()(y x xy +2.x xy xy y x 2)()(++5.(1)}012),({2>+-x y y x ; (2)}0,0),({>->+y x y x y x ; (3)}4,10),({222x y y x y x ≤<+<; (4)}0,0,0),,({>>>z y x z y x ; (5)},0,0),({2y x y x y x ≥≥≥; (6)}1,0,0),({22<+≥>-y x x x y y x ; (7)},),({+∞≤≤-∞+∞≤≤∞-y x y x ; (8)}2,0),({x y x y x π≤≠;(9)}),,({22222R z y x r z y x ≤++<; (10)}0,0),,({22222≠+≥-+y x z y x z y x .6.(1)2ln ; (2)0; (3)∞+;(4)41- (5)不存在; (6)0(7)0 (8)e 9.(1)在)0,0(点不连续(2)在0≠+y x 上所有),(y x 点均连续 (3) 在)0,0(点不连续10-1 (B)1.21x +2.1,22-+=+=x y z x x f3.yy x +-1)1(210-2 (A)1.(1)52(2)1,2ln 22+ (3)3334,3,2e e e2. 13.(1)x y x yz y y x x z 23323,3-=∂∂-=∂∂ (2)221,1vu u v s u v v u s -=∂∂-=∂∂ (3))ln(21,)ln(21xy y y z xy x x z =∂∂=∂∂ (4))]2sin()[cos()],2sin()[cos(xy xy x y z xy xy y x z -=∂∂-=∂∂ (5)y x yx y z y x y x z 2csc 2,csc 222-=∂∂=∂∂ (6)]1)1[ln()1(,1)1(2xyxy xy xy y z xy y xy x z y y++++=∂∂++=∂∂ (7)x x zy z u x z y u x z y x u z yz y y zln ,1,21⋅-=∂∂=∂∂=∂∂-(8)zz x z z z y x y x y x z u y x y x z y u y x y x z x u 22121)(1)ln()(,)(1)(,)(1)(-+--=∂∂-+--=∂∂-+-=∂∂-- 6.4π 7.6π 10.(1)2222812y x x z -=∂∂,2222812x y yz -=∂∂,xy y x z 162-=∂∂∂ (2)22222)(2y x xy x z +=∂∂,22222)(2y x xy y z +-=∂∂,2222222)(y x x y x z +-=∂∂ (3)y y x z x 222ln =∂∂,222)1(--=∂∂x y x x yz ,)ln 1(12y x y y x z x +=∂∂∂- (4))sin()cos(222y x x y x xz+-+=∂∂,)sin(22y x x yz+-=∂∂, )sin()cos(2y x x y x y x z +-+=∂∂∂. 11. 2;2;0;012.023=∂∂∂y x z ,2231y y x z -=∂∂∂.10-2 (B)2.74arctan , )74arctan(-.10-3 (A)1.(1)dy y x dx y y )11()1(2-++;(2))(1dy dx xye x x y--;(3)xdz yx xdy zx dx yzx yz yz yz ln ln 1⋅+⋅+- (4)])1()1[(22)(dy x yx dx y x y eyx x y -+-+- 2.(1)dy dx 3231+ (2)dy dx 5252-3. 0.25e4. (1)2.95 (2)0.005 (3)2.039 (4)0.50235. -5厘米6. 55.3立方厘米10-3 (B)1.xdy e ydx e du yxyx ⋅+⋅=--222210-4 (A)1.)sin (cos cos sin 32θθθθρ-=∂∂pz]cos )sin 2(cos sin )cos 2[(sin 223θθθθθθρθ-+-=∂∂z2.)]23ln(2233[22y x xy x x y x z ---=∂∂]23)23[ln(22yx y y x x y y z ---=∂∂ 3.]2[244)(22yx y x x e x z xyy x -+=∂∂+ ]2[244)(22xyx y y e y z xyy x -+=∂∂+ 4.])()(cos[])(3))((21[322xyz xz yz xy z y x yz xyz z y zx yz xy xu++++++⋅+++++=∂∂ ])()(cos[])(3))((21[322xyz xz yz xy z y x xz xyz z x zx yz xy yu++++++⋅+++++=∂∂ ])()(cos[])(3)(21[3222xyz xz yz xy z y x xy xyz zx yz xy zu++++++⋅++++=∂∂ 5.)6(cos 22sin 2t t e t t -- 6.232)43(1)41(3t t t ---7.xx e x x e 221)1(++ 8.11sin 2++⋅a a x e ax9.)ln 1(1x y x xzy x y +=∂∂-+,x x y z y x y 2ln +=∂∂ 11.(1)'2'12f ye xf xzxy +=∂∂,'2'12f xe yf y z xy +-=∂∂ (2)'11f y x u =∂∂,'2'121f z f y x y u +-=∂∂,'22f zy z u -=∂∂ (3)'3'2'1yzf yf f x u ++=∂∂,'3'2xzf xf y u +=∂∂,'3xyf zu=∂∂ (4))1('yz y f x u ++⋅=∂∂,)('xz x f x u +⋅=∂∂,xy f xu⋅=∂∂' 14.(1)''2'2242f x f x z +=∂∂,''24xyf y x z =∂∂∂,''2'2242f y f yz +=∂∂(2)''222''12''112212f yf y f x z ++=∂∂ '22''22''12221)1(f y f y f y x y x z -+-=∂∂∂ ''2242'23222f yx f y x y z +=∂∂ (3)''2222''123''114'222442f y x f xy f y yf xz +++=∂∂''1223''223''113'2'1252222f y x yf x f xy xf yf yx z ++++=∂∂∂ ''224''123''1122'122442f x yf x f y x xf yz +++=∂∂ (4)''33)(2''12''112'1'322cos 2cos sin f e xf e xf f x f e xz y x y x y x ++++++⋅-=∂∂''33)(2''32''13''12'32sin cos sin cos f e yf e xf e yf x f e yx z y x y x y x y x +++++-+-=∂∂∂ ''33)(2''23''222'2'322sin 2sin cos f e yf e yf f y f e y z y x y x y x ++++-+⋅-=∂∂10-4 (B)1. )1()()()(212122121ψψϕψϕϕψψϕψϕϕ'+'+'-'=∂∂'-'+'+'=∂∂xx y z x yy x z 2. vvuv uu xv xu v u v u x yf x f xy x xf f x xf xf f y x zyf f f x f x z2222)2(22)2(+++++++=∂∂∂+++=∂∂3. z t y f z f z u x t y f x y f x f x u ∂∂∂∂∂∂+∂∂=∂∂∂∂∂∂∂∂+∂∂∂∂+∂∂=∂∂ψϕψϕϕ.10-5 (A)1.xy y e y x 2cos 2--;2.-1;3.xxy x y xy y ln ln 22--. 4.xy xyz xyz yz x z --=∂∂,xyxyz xyzxz y z --=∂∂2 5.z x zx z +=∂∂,)(2z x y z y z +=∂∂ 6. zy y z zxe x z x cos 3,cos 252-=∂∂-=∂∂ 7.dy dx xee x dz xy z xy z ++-+=----1)1(1 8.322224)()2(xy z y x xyz z z ---⋅ 9.32232)(22xy e e z y z xy ze y z z z --- 10. 2 11. 2 12.(1))13(2)16(++-=z y z x dx dy ,13+=z x dx dz (2)y x z y dz dx --=, yx x z dz dy --= (3)y x u y x u -+-=∂∂, y x y v y u -+-=∂∂; y x x u x v -+=∂∂, yx xv y v -+=∂∂10-5 (B)5.32)()()(v u u vv v uv u uv v uu u v u v uu u uv F F F F F F F F F F F F F F F F F -⋅-⋅+⋅+⋅---⋅-⋅ 7.'1'2'2'1'1'2'2'1)12)(1()12(g f yvg xf g f yvg uf x u------=∂∂ '1'2'2'1'1'1'1)12)(1()1(g f yvg xf uf xf g x v----+=∂∂8.1)cos (sin sin +-=∂∂v v e v x u u ,1)cos (sin cos +--=∂∂v v e v y u u ]1)cos (sin [cos +--=∂∂v v e u e v x v u u ,]1)cos (sin [sin +-+=∂∂v v e u e v y v uu 10-61.321+2.32 3.)(2122b a ab+ 4.2948 5. 5 6.14227.1412 8.202020000zy x z y x ++++9. }6,2,3{)0,0,0(--=gradf , }0,3,6{)1,1,1=(gradf10-71.切线方程:222111)12(-=-=--z y x π 法平面方程:422+=++πz y x2.切线方程:8142121-=--=-z y x 法平面方程:011682=-+-z y x 3.切线方程:000211z z z y m y y x x --=-=- 法平面方程:0)(21)()(00000=---+-z z z y y y m x x 4.切线方程:1191161--=-=-z y x 法平面方程:024916=--+z y x5.)1,1,1(1---P 及)271,91,31(2--P7.(1)切平面方程:042=-+y x法线方程:⎪⎩⎪⎨⎧=-=-02112z y x(2)切平面方程:22π=+-z y x , 法线方程:241111π-=--=-z y x(3)切平面方程:002002002202020)()()(1z z z c y y y b x x x a c z z b y y a x x -=-=-=++, 8.2112±=+-z y x 9.)3,1,3(--,133113-=+=+z y x 11.223cos =r10-8])4(21)4(22)[2sin()4(22222)2sin(.122ππηξπ-+-++--++=+y y x x y x y x其中 ).10()4(4<<-+==θπθπηθξy x ,])1(2)1(313)1[ln(!)2(!21.23322232y y x y x x y e y xy y z ηηηξξ+++-++++-+= 其中 ).10(,<<==θθηθξy x ,1021.1.3 10)!1()(!)(.4)(10<<++++=++=+∑θθy x n nk k yx e n y x k y x e10-9(A)1.(1)驻点)0,0(;极大点)0,0((2)驻点)2,2(),0,2(),2,0(),0,0(;极大点)0,0(;极小点(2,2).(3)驻点)0,2(),0,76(-;极大点)0,716(;极小点)0,2(-.2.(1)极小值:3231313),(a a a f =; (2)极小值:0)1,1(=-f ; (3)极大值:8)2,2(=-f ;(4)极小值:2)1,21(ef -=-.3.极大值:41)21,21(=z .4.当两边都是2e 时,可取得最大周界.5.当长、宽、都是32k ,而高为3221k 时,表面积最小. 6. 购买A 原料100吨, 购买B 原料25吨,可使生产量达到最大值. 7. 368. .3,521==D D 利润 125)3,5(=L 9.X=15(千克), Y=10(千克)10. (1) 当电台广告费用万元),(75.01=x 当报纸广告费用万元),(25.12=x 时可使利润最大。
高等数学微积分教材答案第一章:导数与微分1.1 导数的定义1.1.1 极限的概念1.1.2 函数的极限1.1.3 导数的定义及计算方法1.2 导数的基本性质1.2.1 可导性与连续性的关系1.2.2 导数的四则运算法则1.2.3 导数的链式法则1.3 高阶导数与隐函数微分1.3.1 高阶导数的定义1.3.2 隐函数的导数计算方法1.4 微分的定义与微分公式1.4.1 微分的定义1.4.2 微分的性质1.4.3 微分公式第二章:微分学的应用2.1 函数的单调性与极值2.1.1 函数单调性的判定2.1.2 函数的极值与最值2.2 函数的凹凸性与拐点2.2.1 函数的凹凸性定义2.2.2 函数的拐点2.3 泰勒公式与函数的近似计算 2.3.1 泰勒公式的定义2.3.2 泰勒公式的应用2.4 最值问题与优化问题2.4.1 最值问题的分析方法2.4.2 优化问题的数学建模第三章:不定积分3.1 原函数与不定积分3.1.1 原函数的定义与性质3.1.2 不定积分的定义3.2 积分基本公式3.2.1 基本积分公式3.2.2 积分的线性性质3.3 第一类换元积分法3.3.1 第一类换元积分法的基本思想 3.3.2 第一类换元积分法的具体步骤3.4 分部积分法与第二类换元积分法 3.4.1 分部积分法的定义与应用3.4.2 第二类换元积分法的基本原理第四章:定积分与定积分的应用4.1 定积分的定义与性质4.1.1 定积分的几何意义4.1.2 定积分的性质4.2 定积分的计算方法4.2.1 定积分的基本计算方法4.2.2 定积分的换元法4.3 定积分的应用4.3.1 曲线与曲面的长度4.3.2 曲线与曲面的面积4.3.3 物理应用中的定积分4.4 微积分基本定理与不定积分的计算方法 4.4.1 微积分基本定理4.4.2 不定积分的计算方法第五章:数项级数5.1 数项级数的概念与性质5.1.1 数项级数的定义5.1.2 数项级数的性质5.2 收敛级数的判别法5.2.1 正项级数的判别法5.2.2 任意项级数的判别法5.3 幂级数与函数展开5.3.1 幂级数的收敛半径5.3.2 幂级数的函数展开5.4 常数项级数的求和5.4.1 等比级数的求和5.4.2 绝对收敛级数的求和第六章:级数的应用6.1 函数展开与泰勒级数6.1.1 函数展开与泰勒级数的概念6.1.2 泰勒级数的求法6.2 常微分方程与级数解6.2.1 常微分方程的基本概念6.2.2 幂级数解的构造6.3 分析几何中的级数应用6.3.1 曲线与曲面的参数方程6.3.2 空间曲线与曲面的求交问题6.4 物理学中的级数应用6.4.1 物理学中的振动问题6.4.2 物理学中的波动问题总结高等数学微积分教材涵盖了导数与微分、微分学的应用、不定积分、定积分与定积分的应用、数项级数和级数的应用等内容。
福州大学高等数学(下)试题及答案一、单项选择题1.设),(y x f 在点),(b a 处的偏导数存在,则xb x a f b x a f x ),(),(lim 0--+→= 。
A 、 0; B 、),2(b a f x ; C 、),(b a f x ; D 、),(2b a f x 。
2.设曲面),(y x f z =与平面0y y =的交线在点)),(,,(000y x f y x o 处的切线与x 轴正向所成的角为6π,则 。
A 、236cos ),(00==πy x f x ; B 、21)62cos(),(00=-=ππy x f y ; C 、336),(00==πtg y x f x ; D 、3)62(),(00=-=ππtg y x f y 。
3.0lim =∞→n n u是级数∑∞=0n n u 发散的 。
A 、 必要条件; B 、充分条件; C 、充要条件; D 、既非充分又非必要。
4.在区域D :220x R y -≤≤上的σd xy D ⎰⎰2值为 。
A 、2R π; B 、24R π; C 、332R π; D 、0。
5.下列函数中,哪个是微分方程02=-xdx dy 的解 。
A 、x y 2=;B 、2x y =;C 、x y 2-=;D 、2x y -=。
二、是非判断题(15分) 1.⎰+-L y x ydx xdy 22=0,其中L 为圆周122=+y x 按逆时针转一周( ) 2.如果x∂∂ϕ,y ∂∂ϕ均存在,则),(y x ϕϕ=沿任何方向的方向导数均存在( ) 3.以),(y x f 为面密度的平面薄片D 的质量可表为σd y x f D ⎰⎰),(。
( ) 4.)(x f 在],0(π上连续且符合狄利克雷条件,则它的余弦级数处处收敛,且],0[π上收敛于)(x f 。
( )1. 微分方程的通解包含了所有的解。
( )三、计算题(16分)1. 设),(22xye y xf -=μ,其中f 具有一阶连续偏导数,求x ∂∂μ,y x ∂∂∂μ2。
安徽大学微积分考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是正比例函数?A. \( y = 3x \)B. \( y = \frac{1}{x} \)C. \( y = 2x^2 \)D. \( y = 4 \)答案:B2. 函数 \( f(x) = x^2 + 2x + 1 \) 的最小值出现在哪个点?A. \( x = -1 \)B. \( x = 0 \)C. \( x = 1 \)D. \( x = 2 \)答案:A3. 定积分 \( \int_{0}^{1} x^2 dx \) 的值为:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( 1 \)答案:C4. 以下哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的解?A. \( y = e^{2x} \)B. \( y = e^{-x} \)C. \( y = x^2 + e^{2x} \)D. \( y = x^2 - x - e^{2x} \)答案:C5. 函数 \( f(x) = \sin(x) \) 在区间[0, π] 上的定积分为:A. 0B. 1C. 2D. π答案:A6. 曲线 \( y = x^3 \) 在点 (1,1) 处的切线斜率为:A. 0B. 1C. 2D. 3答案:D7. 以下哪个函数是周期函数?A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = e^x \)D. \( y = \log(x) \)答案:B8. 函数 \( f(x) = \frac{1}{x} \) 在区间(0, +∞) 上是:A. 单调递增B. 单调递减C. 有界函数D. 无界函数答案:B9. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是:A. 1B. 0C. 2D. 不存在答案:A10. 以下哪个级数是收敛的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} n \)D. \( \sum_{n=1}^{\infty} (-1)^n \)答案:A二、填空题(每题4分,共20分)11. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点是______。
微积分综合练习题及参考答案Last updated on the afternoon of January 3, 2021综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x . (2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x x x x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x (7)=∞→xx x 1sinlim .答案:1 (8)若2sin 4sin lim 0=→kx x x ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ). A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数答案:B(2)下列函数中为奇函数是(). A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x + 答案:C(3)函数)5ln(4+++=x x x y 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2xC .)2(-x xD .)1)(2(-+x x答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .1-答案:B(7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x x B .3=xC .3,2,1===x x xD .无间断点答案:A3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x(2)329lim 223---→x x x x 解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x 解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x 综合练习题2(导数与微分部分)1.填空题(1)曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 .答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= .答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f. 答案:x x x x f --+-=''e e 2)(2.单项选择题(1)若x x f x cos e )(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2因)(cos e cos )e ()cos e ()('+'='='---x x x x f x x x所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ).A .12d x xB .1d x x ln10C .ln10x x dD .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '-答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f (). A .23cos a x + B .a x 6sin + C .x sin - D.x cos答案:C3.计算题(1)设x x y 12e =,求y '.解: )1(e e 22121x x x y x x -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='(3)设x y x 2e 1+=+,求y '. 解:2121(21e x x y x -+='+(4)设x x x y cos ln +=,求y '. 解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ).A .极值点B .最值点C .驻点D . 间断点答案:C(3)下列结论中( )不正确.A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上.答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .x eC .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
第六章 定积分§6.1~6.2 定积分的概念、性质一、填空题1、设()f x 在[,]a b 上连续,n 等分011[,]:n n a b a x x x x b -=<<<<=,并取小区间左端点1i x -,作乘积1()i b af x n --⋅,则11lim ()ni n i b a f x n -→∞=-⋅=∑()d b af x x⎰.2、根据定积分的几何意义,20d x x =⎰2,1x -=⎰2π,sin d x x ππ-=⎰0.3、设()f x 在闭区间[,]a b 上连续,则()d ()d b baaf x x f t t -=⎰⎰0.二、单项选择题1、定积分()d b af x x ⎰(C) .(A) 与()f x 无关 (B) 与区间[,]a b 无关 (C) 与变量x 采用的符号无关 (D) 是变量x 的函数 2、下列不等式成立的是 (C) . (A) 222311d d x x x x >⎰⎰ (B) 22211ln d (ln )d x x x x <⎰⎰(C)110d ln(1)d x x x x >+⎰⎰ (D) 11e d (1)d xx x x <+⎰⎰3、设()f x 在[,]a b 上连续,且()d 0b af x x =⎰,则 (C) .(A) 在[,]a b 的某小区间上()0f x = (B) [,]a b 上的一切x 均使()0f x = (C) [,]a b 内至少有一点x 使()0f x = (D) [,]a b 内不一定有x 使()0f x = 4、积分中值公式()d ()()b af x x f b a ξ=-⎰中的ξ是 (B) .(A) [,]a b 上的任一点 (B) [,]a b 上必存在的某一点(C) [,]a b 上唯一的某一点 (D) [,]a b 的中点5、d arctan d d bax x x =⎰ (D) .析:arctan d b ax x ⎰是常数(A) arctan x (B)211x+ (C) arctan arctan b a - (D) 06、设244123d ,s i n d I x x Ix x ππ===⎰⎰⎰,则123,,I I I 的关系为 (B) .(A) 123I I I >> (B) 213I I I >> (C) 312I I I >> (D) 132I I I >> 7、设41I x =⎰,则I 的值 (A) . (A) 0I ≤≤(B) 115I ≤≤ (C) 1165I ≤≤ (D) 1I ≥析:4()f x =[]0,1上的最大值是2,最小值是0,所以0I ≤≤.三、估计定积分220e d x x I x -=⎰的值.解 记2()e ,[0,2]xxf x x -=∈,则2()(21)e x x f x x -'=-,令()0f x '=,得12x =. 因为1241e ,(0)1,(2)e 2f f f -⎛⎫=== ⎪⎝⎭,所以()f x 在[0,2]上的最大值为2e ,最小值为14e -,从而 212242ee d 2e x x I x --≤=≤⎰.四、设()f x 在[,]a b 上连续,在(,)a b 内可导,且1()d ()baf x x f b b a =-⎰.求证:至少存在一点(,)a b ξ∈,使得()0f ξ'=.证明 由积分中值定理,存在一点[,]a b η∈,使得()d ()()b af x x f b a η=-⎰,即1()d ()b af x x f b a η=-⎰.又由题设可知,()f x 在[,]b η上连续,在(,)b η内可导,且有()()f f b η=,根据罗尔定理,存在一点(,)(,)b a b ξη∈⊂,使得()0f ξ'=.§6.3微积分的基本公式一、填空题1、若20()x f x t t =⎰,则()f x '=32x .2、32d d x x x⎰23、极限0sin 3d lim1cos x x t tx→=-⎰3.4、定积分412d x x -=⎰52.5、设,0()sin ,0x x f x x x ≥⎧=⎨<⎩,则11()d f x x -=⎰1cos12-.6、由方程2d cos d 0e y xt t t t +=⎰⎰所确定的隐函数()y y x =的导数d d y x=2cos ey x-.7、设()f x 是连续函数,且31()d x f t t x -=⎰,则(7)f =112.8、设13201()()d 1f x x f x x x =++⎰,则10()d f x x =⎰3π.析:设10()d f x x A =⎰,则等式两端同时积分得111320001()d d d 1f x x x x A x x =+⋅+⎰⎰⎰ 1013arctan |,,4443A x A A A ππ=+⋅∴==. 9、设()f x 在闭区间[,]a b 上连续,且()0f x >,则方程1()d d 0()x x abf t t t f t +=⎰⎰在开区间(,)a b 内有1个实根.析:设1()()d d ()x x abF x f t t t f t =+⎰⎰,则有 1()d 0,()()d 0()a b ba F a t Fb f t t f t =<=>⎰⎰,由根的存在定理知至少有存在一个(),a b ξ∈使得()0F ξ=;若方程有两个根,不妨设1,2ξξ即12()0,()0F F ξξ==,则由罗尔定理知,(),a b ξ∃∈使得()0F ξ'=, 即使得1()0()f x f x +=成立,这与()0f x >矛盾, 所以方程又且只有一个根.二、单项选择题1、下列积分中能用微积分基本公式的只有 (C) .(A) 11d x x -⎰ (B) 31e d ln x x x ⎰(C) 1-⎰(D) 1-⎰2、设2()()d xa x F x f t t x a=-⎰,其中()f x 是连续函数,则lim ()x a F x →= (B) . (A) 2a (B) 2()a f a (C) 0 (D) 不存在3、设561cos 2()sin d ,()56x x x f x t t g x -==+⎰,则当0x →时,()f x 是()g x 的 (B) .(A) 低阶无穷小 (B) 高阶无穷小 (C) 等价无穷小 (D) 同阶但不等价无穷小 析: 1cos 42056450004()sin d ()2limlimlim 0()56xx x x x xt tf x x xg x x x-→→→⋅===++⎰. 三、求020(e 1)d limsin x t x t t x x→-⎰.解 根据洛必得法则,得202322000(e 1)d (e 1)d (e 1)1limlimlim lim sin 333x x t t x x x x x t t t t x x x xx x x →→→→---====⎰⎰.四、求函数20()e d xtI x t t -=⎰的极值.解 2()e x I x x -'=,()2222()ee (2)12e x x x I x x x x ---''=+-=-.令()0I x '=,得驻点0x =,又(0)10I ''=>,所以0x =是()I x 得极小值点,极小值为(0)0I =.五、求x .解x x x ==⎰()()24204sin cos d cos sin d sin cos d x x x x x x x x x ππππ=-=-+-⎰⎰⎰()()42042sin cos cos sin x x x x πππ=++--=.六、已知0()()d 1cos xx t f t t x -=-⎰,证明:20()d 1f x x π=⎰.证明 原式可化为 0()d ()d 1cos x xx f t t tf t t x -=-⎰⎰,两边对x 求导,得()d ()()sin xf t t xf x xf x x +-=⎰,即0()d sin xf t t x =⎰,令2x π=,得20()d sin12f t t ππ==⎰,即 20()d 1f x x π=⎰.§6.4 定积分的换元积分法一、填空题1、设()f x 在区间[,]a a -上连续,则2[()()]d a ax f x f x x ---=⎰.2、91x =⎰2ln 2. 3、09912(21)d x x -+=⎰1200.4、31e =⎰2. 5、(211d x x -=⎰2.6、222d 2x xx x -+=+⎰ln3. 7、x =⎰4π.8、设211e ,22()11,2x x x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则212(1)d f x x -=⎰12-.二、单项选择题1、设()f x 是连续函数,()d ()d b baaf x x f a b x x -+-=⎰⎰ (A) .(A) 0 (B) 1 (C) a b + (D) ()d b af x x ⎰析:令a b x y +-=,则()d ()d ()d ()dy 0b bbaaaabf x x f a b x x f x xg x -+-=+=⎰⎰⎰⎰2、设()f x 是连续函数,()F x 是()f x 的原函数,则 (A) . (A) 若()f x 是奇函数,()F x 必为偶函数 (B) 若()f x 是偶函数,()F x 必为奇函数 (C) 若()f x 是周期函数,()F x 必为周期函数 (D) 若()f x 是单调增函数,()F x 必为单调增函数 析:(B)反例:()cos ,()sin 1f x x F x x ==+(C)反例:()1,()f x F x x ==(D)反例:212(),()f x x F x x == 三、计算下列定积分1、()234332011311211222d 3d 32233t t t t t t t t -+⎛⎫⋅=+=+= ⎪⎝⎭⎰⎰. 2、()1ln 1122000021d 21d 2arctan 2112t t t t t t t t π⎛⎫⋅=-=-=- ⎪++⎝⎭⎰⎰.3、d d t t t t =⎰1t=-=.四、设()f x 是连续函数,证明:02(sin )d (sin )d xf x x f x x πππ=⎰⎰.证明(sin )d ()(sin )(d )=()(sin )d x txf x xt f t t t f t t ππππππ=-=---⎰⎰⎰令(sin )d (sin )d (sin )d (sin )d f t t tf t t f x x xf x x ππππππ=-=-⎰⎰⎰⎰.从而 02(sin )d (sin )d xf x x f x x πππ=⎰⎰,即 02(sin )d (sin )d xf x x f x x πππ=⎰⎰.五、设(),()f x g x 在[,](0)a a a ->上连续,且()f x 满足条件()()f x f x A +-=(A 为常数),()g x 为偶函数. (1)证明:()()d ()d a aaf xg x x A g x x -=⎰⎰;(2)利用(1)的结论计算定积分22sin arctan e d xx x ππ-⎰.(1)证明00()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰,而000()()d ()()(d )()()d ()()d a aaax tf xg x xf tg t t f t g t t f x g x x -=----=-=-⎰⎰⎰⎰令,所以()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x -=-+⎰⎰⎰[]0()()()d ()d a af x f xg x x A g x x =-+=⎰⎰.(2)解 取()arctan e ,()sin ,2xf xg x x a π===,令 ()()()arctan earctan e xx F x f x f x -=-+=+,则 ()2222e e e e ()arctan e arctan e 01e 1e 1e 1e x x x x xx x x x xF x -----''=+=+=+=++++,所以 ()F x A =(常数),又(0)arctan1arctan12arctan12F π=+==,即 ()()2f x f x A π-+==.于是有22202sin arctan e d sin d sin d 222xx x x x x x πππππππ-===⎰⎰⎰.§6.5 定积分的分部积分法一、填空题1、cos d x x x π=⎰2-.2、已知()f x 的一个原函数是2ln x ,则1e()d xf x x '=⎰1.3、11()e d xx x x --+=⎰124e --.4、设0sin ()d xtf x t t π=-⎰,则0()d f x x π=⎰2. 析:0000sin sin ()d ()|d ()d x x f x x xf x x x x x x xπππππππ=-=---⎰⎰⎰0(cos )|2x π=-=. 二、计算下列定积分1、2001d arccos 122x x x x =+=-⎰⎰12==+. 2、1e111e1e 1e 1111eeee11ln d (ln )d ln d ln d ln d x x x x x x x x x x x x x x x x =-+=-+⋅+-⋅⎰⎰⎰⎰⎰1121e e 12e e e=-+-+-+=-. 3、ln 2ln 2ln 20ln 2ln 211e d d(e )e e d ln 2e (1ln 2)22x x xx xx x x x x -----=-=-+=--=-⎰⎰⎰. 4、2222200001cos 211sin d d d cos 2d 222x x x x x x x x x x x ππππ-=⋅=-⎰⎰⎰⎰22220022011d(sin 2)sin 2sin 2d 44164x x x x x x x πππππ⎛⎫⎪=-=-- ⎪ ⎪⎝⎭⎰⎰22201110cos 21642164x πππ⎛⎫ ⎪=-+=+ ⎪⎝⎭. 5、1102x x =⎰⎰(被积函数为偶函数)方法一 :122arcsin dx =-⎰1202arcsin x x ⎫=--⎪⎪⎝⎭212x ⎛⎫=-- ⎪ ⎪⎝⎭1202d 1x ⎫=--=-⎪⎪⎝⎭⎰. 方法二:166sin arcsin cos dt cos t txt x t t ππ-=⎰⎰602d(-cos )1t t π==-⎰. 6、111120000ln(1)1ln(1)1d ln(1)d d ln(1)(2)222x x x x x x x x x ++⎛⎫=+=-+ ⎪----⎝⎭⎰⎰⎰ 11001111ln 2d ln 2d (2)(1)321x x x x x x ⎛⎫=-=-+ ⎪-+-+⎝⎭⎰⎰[]1121ln 2ln(2)ln(1)ln 2ln 2ln 2333x x =---++=-=.三、设()f x 是连续函数,证明:000()d d ()()d x u xf t t u x u f u u ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰.证明()0000()d d ()d d()d ()d ()d xx u u x u x xf t t u u f t t u f t t x f t t uf u u ⎡⎤=-=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰()d ()d ()d ()d xxx xx f u u uf u u xf u u uf u u =-=-⎰⎰⎰⎰()()d xx u f u u =-⎰.§6.6 广义积分与Γ函数一、单项选择题1、下列广义积分收敛的是 (D) . (A)e d xx +∞⎰(B) e1d ln x x x +∞⎰(C) 1x +∞⎰ (D) 321d x x +∞-⎰2、以下结论中错误的是 (D) .(A) 201d 1x x +∞+⎰收敛 (B) 20d 1x x x +∞+⎰发散 (C) 2d 1x x x +∞-∞+⎰发散 (D) 2d 1x x x +∞-∞+⎰收敛 3、1211d x x -=⎰ (D) .(A) 0 (B) 2 (C) 2- (D) 发散析:1101222210101111d d d ,d x x x x x x x x --=+⎰⎰⎰⎰发散,0211d x x-⎰也发散。