高等数学-函数全微分
- 格式:ppt
- 大小:1.79 MB
- 文档页数:29
第三节 全微分及其应用一、全微分二、全微分在近似计算中的应用d d tan xy=α沿此曲线计算的函数在点P 处的增量为偏增量z x∆多元函数的全增量运用多元函数的全增量概念,将一元函数的微分概念推广到多元函数中.应用的某一个线性函数表示二元函数的全增量y x ∆∆ ,:z ∆α+∆+∆=−∆+∆+=∆y b x a y x f y y x x f z ),() ,(, ,无关的常数和是与y x b a ∆∆.应该是一个无穷小量α二元函数全微分的定义全微分概念的极限形式函数在区域上的可微性如果函数)f在区域Ω中的(X每一点均可微, 则称函数在区域Ω上可微 .可微连续可导连续:0lim 00=∆→∆→∆z y x 可微:+∆=∆x a z +∆y b )o(22y x ∆+∆什么?可微连续可导可微连续可导可微连续可导逆命题?可 微连续可导连 续可 导连续可导Okf,0(),(≠y xf二、全微分在近似计算中的应用例5 计算的近似值. 解.),(y x y x f =设函数.02.0,04.0,2,1=∆=∆==y x y x 取,1)2,1(=f ∵,),(1−=y x yx y x f ,ln ),(x x y x f yy =,2)2,1(=x f ,0)2,1(=y f 由公式得02.0004.021)04.1(02.2×+×+≈.08.1=谢谢大家!。
高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。
§8.3 全微分及其应用一、全微分的定义根据一元函数微分学中增量与微分的关系, 有偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )为函数对x 的偏增量, f x (x , y )∆x 为函数对x 的偏微分; f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )为函数)对y 的偏增量, f y (x , y )∆y 为函数对y 的偏微分. 全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之. 定义 如果函数z =f (x , y )在点(x , y )的全增量∆z = f (x +∆x , y +∆y )-f (x , y )可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分. 可微与连续: 可微必连续, 但偏导数存在不一定连续.这是因为, 如果z =f (x , y )在点(x , y )可微, 则∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ),于是 0lim 0=∆→z ρ, 从而 ),(]),([lim ),(lim0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ.因此函数z =f (x , y )在点(x , y )处连续.可微条件:定理1(必要条件)如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数xz ∂∂、y z ∂∂必定存在,且函数z =f (x , y )在点(x , y )的全微分为 y y z x x z dz ∆∂∂+∆∂∂=. 证 设函数z =f (x , y )在点P (x , y )可微分. 于是, 对于点P 的某个邻域内的任意一点P '(x +∆x , y +∆y ), 有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A xy x f y x x f x =∆-∆+→∆),(),(lim0, 从而偏导数x z ∂∂存在, 且A x z =∂∂. 同理可证偏导数y z ∂∂存在, 且B yz =∂∂. 所以 y yz x x z dz ∆∂∂+∆∂∂=. 简要证明: 设函数z =f (x , y )在点(x , y )可微分. 于是有∆z =A ∆x +B ∆y +o (ρ). 特别当∆y =0时有f (x +∆x , y )-f (x , y )=A ∆x +o (|∆x |).上式两边各除以∆x , 再令∆x →0而取极限, 就得A x x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00, 从而x z ∂∂存在, 且A x z =∂∂. 同理y z ∂∂存在, 且B y z =∂∂. 所以y yz x x z dz ∆∂∂+∆∂∂=. 偏导数x z ∂∂、y z ∂∂存在是可微分的必要条件, 但不是充分条件.例如,函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0,但函数在(0, 0)不可微分, 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小. 这是因为当(∆x , ∆y )沿直线y =x 趋于(0, 0)时,ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x yx .定理2(充分条件)如果函数z =f (x , y )的偏导数x z ∂∂、y z ∂∂在点(x , y )连续, 则函数在该点可微分. 定理1和定理2的结论可推广到三元及三元以上函数.按着习惯, ∆x 、∆y 分别记作dx 、dy , 并分别称为自变量的微分, 则函数z =f (x , y )的全微分可写作dy yz dx x z dz ∂∂+∂∂=.二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理. 叠加原理也适用于二元以上的函数, 例如函数u =f (x , y , z ) 的全微分为 dz zu dy y u dx x u du ∂∂+∂∂+∂∂=. 例1 计算函数z =x 2y +y 2的全微分.解 因为xy x z 2=∂∂, y x yz 22+=∂∂, 所以dz =2xydx +(x 2+2y )dy .例2 计算函数z =e xy 在点(2, 1)处的全微分.解 因为xy ye x z =∂∂, xy xe yz =∂∂, 212e x zy x =∂∂==, 2122e y z y x =∂∂==,所以 dz =e 2dx +2e 2dy .例3 计算函数yz e y x u ++=2sin的全微分. 解 因为1=∂∂x u , yz ze y y u +=∂∂2cos 21, yz ye zu =∂∂, 所以 dz ye dy ze y dx du yz yz +++=)2cos 21(. *二、全微分在近似计算中的应用当二元函数z =f (x , y )在点P (x , y )的两个偏导数f x (x , y ) , f y (x , y )连续, 并且|∆x |, |∆y |都较小时, 有近似等式∆z ≈dz = f x (x , y )∆x +f y (x , y )∆y ,即 f (x +∆x , y +∆y ) ≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y .我们可以利用上述近似等式对二元函数作近似计算.例4 有一圆柱体, 受压后发生形变, 它的半径由20cm 增大到20. 05cm , 高度由100cu 减少到99cm . 求此圆柱体体积变化的近似值.解 设圆柱体的半径、高和体积依次为r 、h 和V , 则有V =π r 2h .已知r =20, h =100, ∆r =0. 05, ∆h =-1. 根据近似公式, 有∆V ≈dV =V r ∆r +V h ∆h =2πrh ∆r +πr 2∆h=2π⨯20⨯100⨯0. 05+π⨯202⨯(-1)=-200π (cm 3).即此圆柱体在受压后体积约减少了200π cm 3.例5 计算(1. 04)2. 02的近似值.解 设函数f (x , y )=x y . 显然, 要计算的值就是函数在x =1.04, y =2.02时的函数值f (1.04, 2.02).取x =1, y =2, ∆x =0.04, ∆y =0.02. 由于f (x +∆x , y +∆y )≈ f (x , y )+f x (x , y )∆x +f y (x , y )∆y=x y +yx y -1∆x +x y ln x ∆y ,所以(1.04)2. 02≈12+2⨯12-1⨯0.04+12⨯ln1⨯0.02=1.08.例6 利用单摆摆动测定重力加速度g 的公式是224T l g π=. 现测得单摆摆长l 与振动周期T 分别为l =100±0.1cm 、T =2±0.004s. 问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少?解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |, 则利用上述计算公式所产生的误差就是二元函数224T l g π=的全增量的绝对值|Δg |. 由于|Δl |, |ΔT |都很小, 因此我们可以用dg 来近似地代替Δg . 这样就得到g 的误差为 ||||||T Tg l l gdg g ∆∂∂+∆∂∂=≈∆ T l T g l gδδ⋅∂∂+⋅∂∂≤||||)21(4322T l TlT δδπ+=, 其中δl 与δT 为l 与T 的绝对误差. 把l =100, T =2, δl =0.1, δT =0.004代入上式, 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg )/(93.45.022s cm ==π.002225.0210045.0=⨯=ππδg g. 从上面的例子可以看到, 对于一般的二元函数z =f (x, y ), 如果自变量x 、y 的绝对误差分别为δx 、δy , 即|Δx |≤δx , |Δy |≤δy ,则z 的误差 ||||||y yz x x z dz z ∆∂∂+∆∂∂=≈∆||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤ y x y z x z δδ⋅∂∂+⋅∂∂≤||||; 从而得到z 的绝对误差约为 y x z y z x z δδδ⋅∂∂+⋅∂∂=||||; z 的相对误差约为y x z z y z z x z z δδδ∂∂+∂∂=||.。
简述全微分的定义全微分是微积分中一个重要的概念,它用于描述函数在某一点的局部变化情况。
全微分的定义可以简述为:在数学中,函数的全微分是指函数在某一点附近的微小变化量与自变量的微小变化量之间的线性关系。
全微分的定义可以通过以下方式进行描述:设函数f(x,y)在点(x₀,y₀)处可微分,那么函数在该点处的全微分df可以表示为:df = ∂f/∂x * dx + ∂f/∂y * dy其中,∂f/∂x和∂f/∂y分别为函数f(x,y)对自变量x和y的偏导数,dx和dy分别为自变量x和y的微小变化量。
全微分的定义可以理解为,当自变量x和y发生微小变化dx和dy 时,函数f(x,y)的取值也会发生微小变化df。
全微分df可以看作是函数f(x,y)对自变量x和y的微小变化量的线性近似。
全微分的概念在实际应用中具有重要意义。
它可以用于描述函数在某一点的局部变化情况,从而帮助我们理解函数的性质和特点。
通过计算全微分,我们可以得到函数在某一点处的斜率,进而判断函数在该点的增减性和凹凸性。
全微分在物理学、经济学等领域中也有广泛的应用。
例如在物理学中,全微分可用于描述物体在某一点处的位移和力的关系,从而帮助我们理解物体的运动规律。
在经济学中,全微分可用于描述经济变量之间的相互关系,从而帮助我们分析经济现象和制定经济政策。
全微分是微积分中一个重要的概念,它用于描述函数在某一点的局部变化情况。
全微分的定义可以简述为函数在某一点附近的微小变化量与自变量的微小变化量之间的线性关系。
全微分的概念在理论和应用中都具有重要意义,它帮助我们理解函数的性质和特点,以及分析和解决实际问题。
通过深入理解和应用全微分的概念,我们可以更好地掌握微积分的基本原理和方法,为相关学科的研究和应用提供有力支持。