啤酒发酵
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
啤酒发酵的流程
啤酒发酵流程主要包括以下步骤:
1. 麦汁制备:大麦经过发芽、烘干、研磨后与水混合,通过糖化过程将淀粉转化为可发酵糖,再加入酒花煮沸后迅速冷却。
2. 酵母接种:将冷却后的麦汁转移至发酵罐,添加纯净酵母菌种。
3. 主发酵:在适宜温度下,酵母开始消耗麦汁中的糖分,生成酒精、二氧化碳和其他风味物质,这一阶段持续约一周左右。
4. 后发酵:当糖度降至一定值后,转入低温环境,继续发酵并进行双乙酰等化合物的还原,期间产生的二氧化碳逐渐溶解于酒体中。
5. 熟化与澄清:保持低温静置,使啤酒进一步成熟、澄清,排除剩余酵母及沉淀物。
6. 过滤与灌装:经过澄清的啤酒通过过滤去除固形物,然后灌装入容器,并可能进行巴氏杀菌处理,最终成为市售的成品啤酒。
传统啤酒发酵工艺流程传统啤酒发酵工艺流程是一种历史悠久的发酵工艺,它通过大麦芽和啤酒花的发酵来制作啤酒,具有独特的风味和口感。
下面将介绍传统啤酒发酵工艺的流程。
首先,制作啤酒的第一步是麦芽的制作。
通过将大麦浸泡在水中并保持温度和湿度,促进大麦芽的发芽。
在发芽过程中,大麦的淀粉会转化为麦芽糖,这是后续发酵的主要碳源。
接下来,将麦芽研磨成糖化物,也称为麦汁。
这一步通常是通过磨碎麦芽将其变成细粉末。
研磨后的麦芽会被送入一个大容器中,加入适量的水,并加热。
加热过程中,麦汁中的麦芽糖会分解为更简单的糖类,这是后续酵母发酵的必要条件。
发酵是啤酒制作的关键步骤。
经过糖化的麦汁会被冷却,并转移到一个发酵罐中。
然后,添加啤酒酵母。
酵母会将麦汁中的糖类转化为酒精和二氧化碳。
在发酵过程中,酵母会产生一些副产物,如酯类、羧酸和其他化合物,这些物质会赋予啤酒特殊的风味和香气。
发酵通常需要几个星期的时间,具体时间根据啤酒的类型和酵母的品种而定。
发酵完成后,啤酒会进行熟化。
这一步骤通常包括将啤酒转移到一个较低的温度下,并进行冷却和沉淀。
在此过程中,酵母会沉淀并形成一层在啤酒表面的物质。
熟化的目的是更好地澄清啤酒,并使其口感更加醇厚。
最后一步是储存和瓶装。
熟化后的啤酒会被转移到一个储存罐中,以便进一步沉淀和发酵。
这一过程通常会持续几星期或几个月,以确保没有酵母残留,并使啤酒的风味更加稳定和均衡。
最后,啤酒会被瓶装,以供市场销售。
在瓶装过程中,啤酒会被过滤并装入瓶子中,并进行适当的密封和包装。
瓶装的啤酒通常需要一段时间才能达到最佳口感,因此消费者通常需要在瓶子上标明最佳饮用日期。
总之,传统啤酒发酵工艺流程是一个复杂而精密的过程,需要仔细控制和管理。
这种传统工艺所制作出的啤酒具有独特的风味和口感,一直以来都备受人们喜爱。
啤酒发酵的工艺流程
《啤酒发酵的工艺流程》
啤酒是一种广受欢迎的饮料,它经过精心的发酵工艺才能成为我们所喜爱的饮品。
啤酒发酵的工艺流程包括原料准备、糖化、烧制、发酵和成熟等多个步骤。
首先,原料准备。
啤酒的主要原料包括麦芽、啤酒花、水和酵母。
麦芽是啤酒的主要发酵原料,它能够提供淀粉和糖分,啤酒花则为啤酒增添了苦味和芳香。
水是组成啤酒的基础,并影响着啤酒的口感和质量,而酵母是发酵的关键。
这些原料在发酵工艺中将发挥各自的作用。
其次,糖化。
糖化是啤酒发酵的第一步,它的目的是将麦芽中的淀粉转化为可发酵的糖分。
这一过程需要通过加热和控制麦芽中的酶活性来实现,糖化后的麦汁成为接下来发酵的基础。
然后,烧制。
烧制是将糖化后的麦汁进行烹煮和加热,以杀死其中的细菌并增加其浓度。
这一过程也有助于增加啤酒的色泽和口感。
接着,发酵。
发酵是啤酒发酵工艺的核心环节,通过向麦汁中添加酵母,酵母将糖分转化为酒精和二氧化碳。
在这一过程中,酵母会释放出丰富的味道和气味,从而赋予啤酒独特的风味。
最后,成熟。
经过一定时间的发酵,酒精含量和味道都会逐渐完善,啤酒成熟后会变得更加丰富和饱满。
在整个工艺流程中,温度、压力和时间等因素都会对啤酒的质量产生影响,因此需要严格控制每个环节。
啤酒的发酵工艺流程非常复杂,但正是这些步骤的精心安排和严格控制,才使得我们能够品尝到口感丰满、风味独特的啤酒。
啤酒的发酵过程啤酒的发酵过程啤酒是一种古老而广泛饮用的酒精饮品,它的制作过程中最重要的一步就是发酵。
发酵是啤酒生产中不可或缺的环节,它确定了啤酒的质量、口感和风味。
下面将介绍啤酒的发酵过程。
首先,要制作啤酒,我们需要一种称为麦芽的原料。
麦芽是由谷物(通常是大麦)经过发芽和干燥而成的,它富含淀粉和酶。
这些酶能够将淀粉分解成可发酵的糖类物质。
在发酵过程中,这些糖类物质会被酵母转化为酒精和二氧化碳。
接下来,麦芽要进行磨碎。
通过磨碎,麦芽的表面积增大,有利于后续步骤中酶的作用。
然后,将磨碎后的麦芽与水混合,形成麦芽浸渍液。
这个步骤被称为“糖化”。
糖化过程中,麦芽中的酶会活化,并开始将淀粉转化为糖类物质。
这个过程需要保持一定的温度。
一般来说,在麦芽中的酶最适宜的工作温度范围是50-70摄氏度。
麦芽与水的混合物被加热到一定温度,然后保持在这个温度下数十分钟或数个小时,使酶充分作用。
这个步骤叫做“糖化酒花”。
在这一步骤中,糖化酒花液变得甜,颜色也逐渐变浅,得到称为“麦汁”的液体。
接下来,将糖化后的麦汁通过滤网过滤,以去除麦芽渣和其他固体杂质。
这一步叫做“澄清”。
澄清后得到的液体称为“清麦液”。
下一步是酵母的添加。
将酵母加入清麦液中,它们会通过对糖类物质的发酵作用将其转化为酒精和二氧化碳。
在这个过程中,啤酒会产生气泡,并且发酵液的温度也会有所升高。
为了控制发酵液的温度,通常会使用降温装置,以确保温度始终保持在适宜的范围内。
酵母的发酵过程通常需要数日至数周的时间,具体取决于啤酒的类型和制作工艺。
在这段时间内,酵母会逐渐消耗掉糖类物质,并产生酒精和二氧化碳。
酒精的含量取决于酵母的工作效率和发酵液中的糖含量。
通常,酒精的含量在4-7%之间。
当发酵完成后,啤酒会在大容器中静置一段时间,以使其沉淀。
这个步骤叫做“沉淀”。
沉淀后,会有一层酵母沉淀物在容器的底部。
最后一步是对啤酒进行装瓶和储存。
啤酒会被装入瓶子或桶中,密封保持,以防止二氧化碳逸出。
.传统啤酒发酵工艺(1)主发酵又称前发酵,是发酵的主要阶段,也是酵母活性期,麦汁中的可发酵性糖绝大部分在此期间发酵,酵母的一些主要代谢产物也是在此期内产生的。
发酵方法分两类,即上面发酵法和下面发酵法。
我国主要采用后种方法。
下面重点介绍下面啤酒发酵法。
加酒花后的澄清汁冷却至6.5~8.0℃,接种酵母,主发酵正式开始。
酵母对以麦芽糖为主的麦汁进行发酵,产生乙醇和CO2,这是发酵的主要生化反应。
主要步骤如下:①用直接添加法添加酵母在密闭酵母添加器内将回收的酵母按需要量与麦汁混匀(约1:1),用压缩空气或泵送入添加槽内,适当通风数分钟。
②酵母添加量添加量常按泥状酵母对麦汁体积百分率计算,一般为0.5%~0.65%,通常接种后细胞浓度为800万~1200万个/ml。
接种量应根据酵母新鲜度,稀稠度,酵母使用代数、发酵温度、麦汁浓度以及添加方法等适当调节。
若麦汁浓度高,酵母使用代数多,接种温度及酵母浓度低,则接种量应稍大,反之则少。
③发酵第一阶段又称低泡期。
接种后15~20小时,池的四周出现白沫,并向中间扩展,直至全液面,这是发酵的开始。
而后泡沫逐渐培厚,此阶段维持2.5~3天,每天温度上升0.9~1℃,糖度平均每24小时降1°Bx。
④发酵第二阶段又称高泡期。
为发酵的最旺盛期,泡沫特别丰厚,可高达25~30cm。
由于麦汁中酒花树脂等被氧化,泡沫逐渐变为棕黄色。
此阶段2~3天,每天降糖1~1.5%。
⑤发酵第三阶段又称落泡期。
高泡期过后,酵母增殖停止、温度开始下降,降糖速度变慢,泡沫颜色加深并逐步形成由泡沫、蛋白质及多酚类氧化物等物质组成的泡盖,厚度2~5cm。
此阶段2天,每天降糖0.5%~0.8%。
当12度酒糖度降至3.8~4°Bx时,即可下酒进入后发酵。
(2)后发酵后发酵又称贮酒,其目的是完成残糖的最后发酵,增加啤酒的稳定性,饱充CO2,充分沉淀蛋白质,澄清酒液;清除双乙酰、醛类及H2S等嫩酒味,促进成熟;尽可能使酒液处于还原状态,降低氧含量。
啤酒的发酵原理
在啤酒的制作过程中,发酵是至关重要的步骤。
啤酒的发酵原理是利用酵母菌将糖分解为酒精和二氧化碳。
以下是啤酒的发酵原理的详细解析:
1. 酵母菌添加:在啤酒麦汁中添加酵母菌,常用的酵母菌种类是酿酒酵母(Saccharomyces cerevisiae)。
酵母菌是一种单细
胞真菌,能够利用糖类进行代谢。
2. 糖的分解:酵母菌利用麦汁中的残留糖,通过发酵过程将其分解。
主要的糖类成分是麦芽糖和葡萄糖。
3. 酒精生成:在发酵过程中,酵母菌将糖分子分解成乙醇(酒精)和二氧化碳。
这是通过酵母菌的代谢产物产生的。
酒精是发酵饮料中的主要成分,它给啤酒带来了酒精度和独特的风味。
4. 二氧化碳的释放:发酵过程中生成的二氧化碳会释放到酒液中,并产生气泡,使啤酒具有起泡性。
这个过程被称为二次发酵或瓶内发酵。
5. 温度控制:发酵过程需要被控制在适当的温度范围内进行,通常为12-22摄氏度之间。
过高或过低的温度都会影响酵母菌
的活性和发酵效果。
在发酵完成后,啤酒会进行糖化过程(也称为陈化或停止发酵),以平衡和改善其风味。
这个过程需要将啤酒储存一段时间,让醣化作用逐渐停止。
总结起来,啤酒的发酵原理是通过酵母菌将糖分解为酒精和二氧化碳。
发酵过程中的温度控制和时间糖化作用的停止都对啤酒的口感和风味起着重要作用。
传统啤酒发酵工艺当被冷却的麦汁添加入酵母后,就是意味着发酵已经开始;在整个发酵过程中,酵母经历有氧呼吸和无氧发酵两个主要阶段;这两个阶段相互联系,密不可分;啤酒发酵过程充分地利用了酵母的特性,在发酵开始时,让酵母在溶氧麦汁中大量繁殖,并积累能量,保证了在无氧条件下产生乙醇所需要的菌体数量和能量需要;控制麦汁溶氧和酵母添加量是啤酒发酵过程工艺控制的关键因素;传统啤酒发酵一般分为前发酵,主发酵,后发酵三个阶段,一、前发酵;接入酵母的麦汁7-8℃进入前发酵后,酵母经过数小时生长带缓期后,才能开始进入生长繁殖,当细胞浓度达到2×107个/ML;麦汁表面开始气泡,这个阶段被称为前发酵;前发酵时间随接种温度,接种量变化而变化;低温发酵约为16-20h,中温发酵12—14h;前发酵阶段,酵母降糖较缓慢,由于酵母代谢作用,发酵液温度会自然升高—℃.前发酵结束后,将发酵液打入主发酵室;二、主发酵;主发酵在绝热良好,清洁卫生的发酵室内进行,室内安装通风系统;主发酵多采用开放式方形或圆形,有木制,钢制,铝制和混凝土制发酵容器,主发酵阶段发酵温度为5—6度;主发酵前期为酵母繁殖阶段;酵母通过呼吸作用利用可发酵糖,当达到一定发酵度后,发酵速度逐渐减慢,表现在乙醇含量迅速增加;而降糖速率减慢,PH值变化减小,二氧化碳产量减小,此时酵母开始凝聚并开始沉淀,悬浮的酵母细胞密度逐渐下降;1、主发酵工艺过程:接种,将麦汁冷却至接种6度左右,待部分麦汁流入酵母繁殖槽,将所需的酵母按麦汁量的%体积分数加入,也可以将酵母在冷却麦汁管用定量泵直接加入麦汁中,加入的酵母要与麦汁混合均匀,有利于酵母起作用;麦汁通风,用无氧器将无菌空气通入冷却麦汁中,为了使溶氧达到要求,通过特殊喷嘴或用微孔钛棒和陶瓷棒,使空气尽可能地分散进入麦汁,并与麦汁充分混合,也可让冷却麦汁与空气接触后经过文丘里管,达到麦汁与空气充分接触的目的,麦汁溶氧应控制在8mg/L左右;麦汁加满后,酵母经繁殖20h,发酵麦汁中释放大量的二氧化碳,并在麦汁表面形成一层白色泡沫,这时需要换槽,将发酵麦汁泵入发酵槽,目的是将沉淀在槽底部的酵母细胞,蛋白质凝固物和酒花树脂等杂质与发酵麦汁分离开;换槽后,麦汁中的溶氧基本上被酵母所消耗,酵母开始进入厌氧发酵阶段,发酵进行至2—3天,发酵液的温度升至规定的发酵最高温度,此时启动槽内的冷却管,通入2度左右的冰水,使之不超过规定的最高温度,并维持2—3天,此时为发酵的旺盛期,降糖很快,每日酒液外观浓度下降%—%;经过降糖高峰期后,冷却量开始逐步加大,使发酵温度回降,降糖也逐渐减慢;按工艺要求发酵温度下降应与降糖情况相一致,主发酵结束时,一般.12%的麦汁下酒外观浓度控制在%—%,下酒温度控制在%—%度,在主发酵最后一天要急剧降温,这有利于酵母的沉降和酵母的回收;2、主发酵过程控制温度和降糖速度是主发酵需要控制的技术参数,温度的高低对发酵影响很大,而降糖速度可以反映出发酵是否正常及发酵进行的程度;(1)温度控制;接种温度一般控制在5—8度,接种温度的确定主要是根据酵母,酵母添加量以及制造啤酒的类型来确定;发酵温度的高低是相对而言的,最高温度8—9度为低温发酵,而10—13度高温发酵,采用低温发酵所产生的啤酒质量较好,主要是在发酵过程所形成的副产物,特别是高级醇和酯较多,泡沫状况良好,口味醇厚性比较突出;而高温发酵,发酵周期被缩短,设备利用率高,经济上比较合理,但发酵产生的副产物较多,口味较低温发酵差;主发酵结束温度一般控制在4—5度,从最高发酵温度向主发酵温度结束的降温过程中,应采用缓慢降温的方法,由于酵母对急剧降温很敏感,所以每天降温不得超过1度,而且降温要均匀,降低温度使酵母开始凝聚并沉淀,但酒液中还有一定量的悬浮酵母细胞,它们对双乙酰还原及后发酵至关重要;(2)降糖速度;在酵母添加量及通风景一定的条件下,酵母降糖速度是受发酵温度控制的,发酵工艺确定后,正常发酵降糖速度呈有规律的变化;利用糖度计测定发酵不同阶段糖的变化情况,可以得到降糖曲线,了解发酵过程降糖规律,对指导生产非常重要;在工艺条件正常的情况下降糖速度出现异常,主要是酵母因使用代数过多,死酵母增加,酵母衰老,酵母变异或出现污染杂菌情况引起的;三、后发酵;后发酵又称贮酒,其目的是完成残糖的最后发酵,增加啤酒的稳定性,饱充CO2,充分沉淀蛋白质,澄清酒液;清除双乙酰、醛类及H2S等嫩酒味,促进成熟;尽可能使酒液处于还原状态,降低氧含量;经主发酵后,酒液仍不够成熟,还有一部分浸出物需要继续发酵,尤其生产淡爽型啤酒,应尽可能减少可发酵糖的含量,在主发酵阶段,二氧化碳被排掉或被收回,使酒液中二氧化碳含量不足,这需要过后发酵使啤酒中所含二氧化碳达到饱和水平,而由主发酵产生的挥发性物质如双乙酰,硫化氢等也经过后发酵和储酒液使其含量减少至规定的范围内,另外悬浮在酒液中的酵母凝聚和沉降以及发酵液析出物质的沉淀,也是在后发酵和储酒过程中完成的;下面介绍下面啤酒发酵法后发酵的流程;(1)下酒将主酵嫩酒送至后酵罐称为下酒;下酒时,应避免吸氧过多,为此先将贮酒罐充满无菌水,在用CO2将无菌水顶出,当CO2充满时再由贮酒桶底部进酒液;此外,要求尽量一次满罐,留空隙10~15cm,以防止空气进入酒液;如果酒液被CO2饱和,由于有CO2溢出,氧则难溶于酒液中;否则啤酒中存在过多的溶解氧易引起氧化混浊,并产生氧化味;(2)管理下酒后,先开口发酵,以防CO2过多,酒沫涌出,2~3天后封罐;下酒初期室温~℃,若是外销酒,一个月后逐渐降至0~1℃;温度前高后低目的在于先使残糖发酵,随后澄清;注意不能将不同酒龄的酒液共存一室,否则温度要求互相矛盾,无法控制室温;一般老工艺12°Bx外销酒贮酒时间为60~90天,内销酒为35~40天;贮酒期间,用烧杯取样观察,通常7~14天罐内酵母下沉;若长期酒液不清,应镜检;若是酵母悬浮,则是酵母凝聚性差;若是细菌混浊,则属细菌污染,通常无法挽救,只能排放;若是胶体混浊,原因是麦芽溶解度差,糖化蛋白分解不良,煮沸强度不够,冷凝固物分离不良等因素造成;四、发酵过程物质转变(1)糖类发酵在麦汁浸出中糖类约占90%左右;这些糖大部分是低分子糖,酵母可以利用许多单糖,双糖和寡糖,而对聚糖,淀粉,纤维素则不能利用,酵母酵解糖类是按下列顺序进行的;单糖,葡萄糖,果糖,双糖,麦芽糖,蔗糖不同酵母利用程度不同三糖,棉籽糖,麦芽三糖不是所有酵母都能利用葡萄糖和果糖能直接渗透过酵母细胞壁并受酵母酸化酶作用而磷酸化;蔗糖则需要经由酵母细胞壁分泌出来的蔗糖转化酶水解成葡萄糖和果糖后,才能进入酵母细胞进行发酵;麦芽糖和麦芽三糖需与细胞壁分泌出的麦芽糖渗透酶结合才能进入细胞内;进入到酵母细胞内的各种可发酵糖,在有氧或无氧条件下均代谢生成丙酮酸;在有氧条件下,丙酮酸有氧分解为两个阶段,首先丙酮酸经过氧化脱形成乙酰辅酶A,然后乙酰辅酶A经TCA三酸循环,获得生物能量38个ATP,生成CO2和H2O,在循环中形成的多种有机酸排泄于发酵液中;乙酰辅酶A也可经其他支路代谢作用,生成酶类和脂肪酸等;丙酮酸在缺氧情况下生成乙醇和二氧化碳;在啤酒发酵过程中,约有96%可发酵糖转化为乙醇和二氧化碳,%—%合成新细胞的碳骨架,%%转化为其他发酵副产物,这些副产物主要有甘油,琥珀酸,高级醇,乙醛,双乙酰,乙酸,乙酸乙酯等;虽然副产物的量不大,但对啤酒的风味及口味影响却很大,这是特别需要注意的;(2)含氧物质的同化与转化酵母细胞的繁殖,必须通过吸收和同化麦汁中的含氧物质来实现,正常的酵母细胞分泌蛋白质酶的能力很弱,对蛋白质很难利用,酵母所需要的氮源,主要依靠从麦汁中吸收氨基酸和低分子肽来获取;酵母对氨基酸吸收也同酵母吸收糖一样,依赖于细胞壁分泌出的氨基酸输送酶来完成,并且是按照一定的顺序来进行的;。
啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的可发酵性物质而进行的正常生命活动,其代谢的产物就是所要的产品--啤酒。
由于酵母类型的不同,发酵的条件和产品要求、风味不同,发酵的方式也不相同。
根据酵母发酵类型不同可把啤酒分成上面发酵啤酒和下面发酵啤酒。
一般可以把啤酒发酵技术分为传统发酵技术和现代发酵技术。
现代发酵主要有圆柱露天锥形发酵罐发酵、连续发酵和高浓稀释发酵等方式,目前主要采用圆柱露天锥形发酵罐发酵。
一、传统发酵技术生产工艺流程:充氧冷麦汁→发酵→前发酵→主发酵→后发酵→贮酒→鲜啤酒↑菌种二、现代发酵技术现代发酵技术主要包括大容量发酵罐发酵法(其中主要是圆柱露天锥形发酵罐发酵法)、高浓糖化后稀释发酵法、连续发酵法等。
(一)锥形发酵罐发酵法传统啤酒是在正方形或长方形的发酵槽(或池)中进行的,设备体积仅在5~30m,啤酒生产规模小,生产周期长。
20世纪50年代以后,由于世界经济的快速发展,啤酒生产规模大幅度提高,传统的发酵设备以满足不了生产的需要,大容量发酵设备受到重视。
所谓大容量发酵罐是指发酵罐的容积与传统发酵设备相比而言。
大容量发酵罐有圆柱锥形发酵罐、朝日罐、通用罐和球形罐。
圆柱锥形发酵罐是目前世界通用的发酵罐,该罐主体呈圆柱形,罐顶为圆弧状,底部为圆锥形,具有相当的高度(高度大于直径),罐体设有冷却和保温装置,为全封闭发酵罐。
圆柱锥形发酵罐既适用于下面发酵,也适用于上面发酵,加工十分方便。
德国酿造师发明的立式圆柱锥形发酵罐由于其诸多方面的优点,经过不断改进和发展,逐步在全世界得到推广和使用。
我国自20世纪70年代中期,开始采用室外圆柱体锥形底发酵罐发酵法(简称锥形罐发酵法),目前国内啤酒生产几乎全部采用此发酵法。
(5)操作步骤(一罐法发酵)①接种选择已培养好的0代酵母或生产中发酵降糖正常,双乙酰还原快、微生物指标合格的发酵罐酵母作为种子,后者可采用罐-罐的方式进行串种。
接种量以满罐后酵母数在(1.2~1.5)×10个/ml为准。
啤酒发酵的原理
啤酒发酵是一种利用酵母菌将碳水化合物转化为酒精和二氧化碳的过程。
这种发酵过程可以通过以下几个步骤来解释:
1. 稻草溶解: 在制作啤酒的过程中,麦芽会被稻草溶解。
这种
溶解使麦芽中的淀粉酶活化,开始将淀粉分解为碳水化合物。
2. 糖化: 活化的淀粉酶将淀粉分解为麦芽糖。
这是一个关键步骤,因为麦芽糖是酵母菌发酵所需的营养来源。
3. 发酵: 在发酵罐中,麦芽糖与酵母菌接触。
酵母菌利用麦芽
糖进行代谢,产生酒精和二氧化碳。
酵母菌通过一种叫做酵母菌酒精发酵的过程将麦芽糖转化为酒精。
4. 贮存和罐装: 当酵母菌耗尽麦芽糖时,发酵过程会停止。
此时,啤酒会通过过滤、处理和贮存等步骤进行后续处理。
最后,啤酒会被罐装或灌装到瓶子中。
总的来说,啤酒发酵的原理是酵母菌利用麦芽糖进行代谢,产生酒精和二氧化碳。
这个过程涉及到淀粉的分解和麦芽糖的转化,最终形成我们熟悉的啤酒。
啤酒的制作工艺一.啤酒的定义:啤酒是以大麦芽﹑酒花﹑水为主要原料﹐经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。
二.啤酒发酵:啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的可发酵性物质而进行的正常生命活动,其代谢的产物就是所要的产品—-啤酒.由于酵母类型的不同,发酵的条件和产品要求、风味不同,发酵的方式也不相同.一般可以把啤酒发酵技术分为传统发酵技术和现代发酵技术。
三.流程图四.工艺制作1.制麦工序①:生产麦芽汁的原料有大麦芽,大米,酒花和水.原料投产前,都要经过一般理化分析,检验是否符合要求。
大麦发芽后要经过干燥,并除去根,贮存八周左右才能使用,大米的淀粉含量高,约为76%-80%,蛋白质含量低,为7%-8%,用大米代替部分麦芽,不仅成本低,出酒率高,而且可以改善啤酒的风味和色泽。
②:为了得到干净、一致的优良麦芽,制麦前,大麦需先经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级。
③:大麦的要求:适于啤酒酿造用的大麦为二棱或六棱大麦.二棱大麦的浸出率高,溶解度较好;六棱大麦的农业单产高,活力强,但浸出率较低,麦芽溶解度不太稳定.啤酒用大麦的品质要求为﹕壳皮成分少﹐淀粉含量高﹐蛋白质含量适中(9~12%)﹔淡黄色﹐有光泽﹔水分含量低于13%﹔发芽率在95%以上。
④:酒花,又称忽布,《本草纲目》上称为蛇麻花,是一种多年生草本蔓性植物,古人取为药材。
雌雄异株,酿造上所用的均为雌花.它能赋予啤酒香味和爽口的苦味,增进啤酒的泡特性和稳定性。
与麦汁一起煮沸时,能促进蛋白质凝固,有利于麦汁澄清,增加麦汁和啤酒的防腐能力。
⑤:啤酒生产用水,以糖化用水为最重要,除应符合饮用水标准外,还要求碳酸盐硬度低,非碳酸盐硬度适当,可以控制糖化醪和麦汁的pH值,使其偏酸,利于麦芽中的各种酶酶促反应,提高麦汁质量。
2。
糖化工艺糖化工艺包括糊化,糖化,糖化醪的过滤,麦汁的煮沸,沉淀,冷却,充氧等过程。
主要过程为:麦芽、大米等原料由投料口或立仓经斗式提升机、螺旋输送机等输送到糖化楼顶部,经过去石、除铁、定量、粉碎后,进入糊化锅、糖化锅糖化分解成醪液,经过滤槽/压滤机过滤,然后加入酒花煮沸,去热凝固物,冷却分离。
啤酒发酵平均时长
啤酒是一种受欢迎的饮料,它的制作过程中需要经过发酵的过程。
啤酒发酵平均时长是多少呢?这个问题的答案并不是那么简单,因为啤酒的发酵时间取决于多种因素。
啤酒的发酵时间取决于啤酒的类型。
不同类型的啤酒需要不同的发酵时间。
例如,淡色啤酒通常需要发酵7-10天,而深色啤酒则需要更长的时间,通常需要发酵10-14天。
此外,一些特殊的啤酒,如Belgian Saison,需要更长的发酵时间,可能需要3-4周。
啤酒的发酵时间还取决于酵母的类型和数量。
不同的酵母株会对发酵时间产生不同的影响。
一些酵母株可以在较短的时间内完成发酵,而另一些则需要更长的时间。
此外,酵母的数量也会影响发酵时间。
如果酵母数量不足,发酵时间可能会更长。
啤酒的发酵时间还取决于发酵条件。
发酵温度、氧气水平和PH值等因素都会影响发酵时间。
如果发酵温度过低或过高,发酵时间可能会延长。
同样,如果氧气水平不足或PH值不正确,发酵时间也可能会受到影响。
总的来说,啤酒发酵平均时长是一个相对的概念,取决于多种因素。
如果你想制作自己的啤酒,最好根据啤酒类型、酵母类型和发酵条件来确定发酵时间。
这样可以确保你制作出的啤酒口感和质量都符合你的期望。
溶解氧在啤酒发酵中的探讨
啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的麦芽糖而进行的正常生命活动,其代谢的产物就是所要的产品,其主要成分为乙醇,发酵副产物主要为醇类、醛类、酸类、酯类、酮类和硫化物等物质。
正是由于这些发酵产物决定了啤酒的风味、泡沫、色泽和稳定性等各项理化性能,赋予啤酒以典型特色。
因此根据酵母菌种类型,发酵的条件和产品要求,其发酵的方式也不尽相同。
啤酒发酵为厌氧发酵,所以发酵液中溶氧量的高低对代谢产物的积累有着重要的影响作用,研究表明溶氧对发酵过程的影响主要来自两个方面:一是溶氧浓度影响与呼吸链有关的能量代谢,从而影响微生物生长;另一是氧直接参与产物合成。
因此研究溶氧对发酵的影响及控制对提高生产效率,改善产品质量等都有重要意义。
啤酒发酵所用的菌种为酵母菌,其为兼性好氧微生物,其生长不一定需要氧,但是在培养中供给氧,则菌体生长更好。
然而,酒精在其发酵过程中必须严格控制氧气的存在。
因为如果有氧存在的情况下会使啤酒的质量下降,其主要的影响有以下几个方面:(1)溶氧过高会使啤酒产生胶体浑浊,因为啤酒中含有大量的琉基的蛋白质和多肤,容易受到氧化后形成双硫键,促进了蛋白质和多肤聚合,形成浑浊物质。
啤酒中多酚物质在一定条件下可以氧化聚合为多聚体,如果啤酒中有较多的溶解氧存在,加上有一价金属离子的催化与结合,多酚加速聚合的同时又可以氢键和共价键的形式与多肽相结合,使呈现雾状浑浊。
由于氧化聚合继续进行,形成许多牢固的共价键结合物,呈絮状或片状混合物。
由此可知,氧对啤酒浑浊的形成具有极大的影响。
(2)溶氧过高会使啤酒中双乙酞含量升高,主要由于氧的存在,使啤酒中残留的α一乙酞乳酸氧化脱羚而使双乙酞的含量增高。
(3)溶氧过高还会影响啤酒的风味,因为啤酒的风味主要是由于双乙酞及其前体、醛类、酯类、高级醇、含硫化合物等引起的。
这些风味组成成分所含有的醛基、轻基、琉基、烯或烯醇基等,都可以被氧化或进行加氧反应,结果可能会使啤酒中原来感觉不到的风味成分转化为能感觉到的风味成分,或改变原有风味成分的呈味性质从而产生异杂味,并且导致啤酒口感粗劣。
(4)溶氧过
高还能加深啤酒色泽,啤酒中含有的一些糖类和氨基酸在有氧的条件下会缓慢氧化,使啤酒色泽加深,主要原因是多酚类氧化聚合形成的蹂配而使啤酒呈现暗红色。
(5)溶氧过高会破坏酒花香味和苦味,原因是由于氧能促进酒花不饱和菇烯化合物氧化,形成饱和烃,丧失酒花的新鲜香味,形成烷烃臭和苦味。
氧也能促进α一酸氧化,形成氧化α一酸、β至一树脂,这些产物大多数给啤酒带来粗糙的苦味和后苦味。
然而在发酵过程中始终不供给氧也是不行的,因为虽然酵母菌为兼性厌氧型微生物,能在无氧条件下生活,但是在此条件下细菌生长缓慢,最终会因发酵产物酒精含量的增大而使菌体发生死亡,因此在发酵的前期因供给其一定的溶氧目的是是酵母菌增殖产生大的菌体,使其快速到达对数期,从而有利于后续发酵的快速进行。
因此在酒精发酵过程中对溶DO进行严格的控制,控制主要分两个阶段,初始提供高DO值进行菌体扩大培养,后期严格控制DO进行厌氧发酵。
啤酒发酵液总含氧量由酒体溶解氧和瓶颈空气两部分组成,一般情况下,啤酒中的含氧量超过2PPM时对生产就有明显的危害。
因为氧气的存在会促使酵母采取有氧呼吸的代谢途径,从而破坏乙醇发酵的厌氧代谢过程。
但是,研究表明无氧条件下发酵生成的乙醇低于溶氧控制在1%-4%条件下生成的乙醇。
这主要是由于无氧条件下的菌体量远远低于有氧条件下菌体量,而乙醇的生成与菌体量有很大的联系。
大量的研究和实验表明成品啤酒中溶解氧的含量应控制在0.1 mg/L左右,过高易导致啤酒产生类似脂肪氧化后的臭味,影响啤酒的爽快、醇厚性,且使啤酒的后苦味增强,甚至由于成品啤酒中过多氧的存在造成木已还原的双乙酞再次生成,使啤酒产生“生青味”,并氧化啤酒中的一些风味物质,使啤酒风味变差。
氧能与蛋白质、多酚化合物反应形成永久性浑浊,降低啤酒的非生物稳定性。
啤酒摄入氧主要在过滤与灌装工序,过滤工序中如果能够把清酒的溶解氧水平控制在0.1 mg/L以下,就可以有效地提高啤酒的稳定性,延长啤酒贮藏。