五年级下册质数与合数,奇数与偶数知识点总结
- 格式:docx
- 大小:16.53 KB
- 文档页数:2
质数和合数知识重点1、自然数按因数的个数来分:质数、合数、1、 0 四类 .( 1)、质数(或素数):只有 1 和它自己两个因数。
( 2)、合数:除了 1 和它自己还有其他因数(起码有三个因数:1、它自己、其他因数)。
( 3)、1:只有 1个因数。
“ 1”既不是质数,也不是合数。
注:①最小的质数是 2 ,最小的合数是4,连续的两个质数是 2 、 3。
②每个合数都能够由几个质数相乘获得,质数相乘必定得合数。
③ 20 之内的质数:有8 个( 2、 3、 5、 7、 11、 13、 17 、 19)④100 之内的质数有 25 个: 2、 3、 5、 7、 11、 13 、 17 、 19 、 23 、 29 、 31 、 37 、 41 、43、 47 、 53、 59 、 61、 67 、 71 、 73 、 79 、 83 、 89 、 972、 100之内找质数、合数的技巧:看是不是2、 3、 5、 7 、 11、 13, 的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数 = 奇数质数×质数 =合数3、常有最大、最小A 的最小因数是:1;最小的奇数是:1;A 的最大因数是:自己;最小的偶数是:0;A 的最小倍数是:自己;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图例:剖析:先把36 写成两个因数相乘的形式,假如两个因数都是质数就不再进行分解了;假如两个因数中海油合数,那我们持续分解,向来分解到所有因数都是质数为止。
把36 分解质因数是:36=2 × 2 × 3× 35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:1 / 4剖析:看上边两个例子,分别是用短除法对18,30分解质因数,左侧的数字表示“ 商”,竖折下边的表示余数,要注意步骤。
详细步骤是:2 / 46、互质数:公因数只有 1 的两个数,叫做互质数。
人教版五年级下册数学第二单元知识点总结第一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
【×】改正:6是3和2的倍数,3和2是6的因数。
练习:【1】8×5=40,【】和【】是【】的因数,【】是【】和【】的倍数。
【2】因为36÷9=4,所以【】是【】和【】的倍数,【】和【】是【】的因数。
【3】在18÷6=3中,18是6的【】,3和6是【】的【】。
【4】在14÷7=2中,【】能被【】整除,【】能整除【】,【】是【】的倍数,【】是【】的因数。
【5】若A÷B=C【A、B、C都是非零自然数】,则A是B的【】数,B是A的【】数。
【6】如果A、B是两个整数【B≠0】,且A÷B=2,那么A是B的,B是A的。
【7】判断并改正:因为7×6=42,所以42是倍数,7是因数。
【】因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
【】5是因数,15是倍数。
【】甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
【】【8】甲数×3=乙数,乙数是甲数的【】。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:【1】有5÷2=2.5可知【】A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数【2】36÷5=7……1可知【】A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数【3】属于因数和倍数关系的等式是【】A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有【】。
第三周数的奇偶性和质数、合数1、自然数按能不能被2整除来分:奇数、偶数。
2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
2、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
0:最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)5、互质数:公因数只有1的两个非零自然数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;例1 观察下面各式得数的奇偶性与加数或者被减数和减数的奇偶性。
五年级下册数学知识11、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
最小的自然数是02、因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
例:12÷2=6, 12是6的倍数,6是12的因数。
为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。
数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
一个数的最大因数=最小倍数=它本身3、2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
①自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数,叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小) 奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数2)数的整除特征例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是( 984 ),最小的是( 450 )②在能被3整除的数中,最大的是( 984 ),最小的是( 405 )③在能被5整除的数中,最大的是( 980 ),最小的是( 405 )2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。
4、质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
【本节知识框架】知识点一:2、3、5的倍数的特征知识点二:4、8、25、125的倍数的特征知识点三:质数和合数(重点)知识点四:奇数和偶数【新课内容】知识点一:2、3、5的倍数的特征知识点:2的倍数尾数一般为:0、2、4、6、8 ;5的倍数尾数一般为:0、5知识点:将这个数的各个位上的数字相加,如果所得的和正好是3的倍数,则这个数是3的倍数;否则如果所得的和不是3的倍数,则这个数不是3的倍数。
例题1填一填:1、在23、12、56、15、21、79、30、106、69、38、48、57、92、24、96这些数中,是3的倍数的有()。
2、判断一个数是不是2的倍数或5的倍数,只要看它的()位上的数,判断一个数是不是3的倍数,要看这个数的各个位上的数的()。
【变式练习】1、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有( ),既是2的倍数又是5的倍数有(),既是3 的倍数又是5的倍数有()。
2、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。
【随堂练习】1、填空题(1)写出三个2的倍数的两位数:______________________。
(2)写出三个5的倍数:一位数__________,两位数__________,三位数__________。
2、判断题。
(1)既是2的倍数,又是5的倍数,个位上一定是0。
()(2)5的倍数都是奇数。
()(3)2.5×4=10,所以10是4的倍数,4是10的因数。
()(4)一个数的因数一定小于这个数的倍数。
()(5)一个数如果是9的倍数,就一定是3的倍数。
()3、选择题。
(1)既是2的倍数,又是5的倍数的最大两位数是()A.98B.95C.90(2)同时是2、3、5的倍数的数是()。
A、18B、120C、75D、830能力提升:1、用6、0、5三张数字卡片组成不同的三位数,分别满足一下条件,把这些数写出来。
五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
偶数、奇数、质数和合数五年级杨皓一、知识归纳:1、2的倍数的特征:个位是上0,2,4,6,8的数2、3的倍数的特征:一个数的各数位上的数字之和是3的倍数的数3、5的倍数的特征:个位上是0或5的数4、同时是2和5的倍数的特征:个位上是0的数5、奇数和偶数的含义:奇数:不是2的倍数的数偶数:是2的倍数的数6、奇数、偶数的运算性质:奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数二、典例剖析(基础篇):例1 101以内2的倍数有哪些?你发现了什么规律?例2 下列各数中,哪些是奇数?哪些是偶数?55 96 455 688 0 234 4678 7089 2000 555 4545 991例3 101以内5的倍数有哪些?你发现了什么规律?例4 101以内3的倍数有哪些?你发现了什么规律?【基础训练】一、填空题1、个位是()的数,都是2的倍数。
2、()的数叫做偶数,()的数叫做奇数。
3、最小的偶数是(),()最大的偶数。
最小的奇数是(),()最大的奇数。
4、由最小的奇数和最小的偶数组成的两位数是()。
5、用0,1,3,7这四个数字组成一个最大的偶数是(),最大的奇数是()。
2、是3的倍数的数一定是奇数。
()3、偶数都比奇数大。
()4、个位上是3,6,9的数,都是3的倍数。
()5、个位上是0的数,既是2的倍数,也是5的倍数。
()三、选一选,填一填。
48 51 65 78 260 104 36 157是2的倍数是5的倍数是3的倍数四、按要求写数。
1、写出一个同时2、5、3的倍数的最小自然数(0除外)2、写出最小的两位奇数。
3、写出最大的三位偶数。
三、典例剖析(提高篇):例1 从三个数0、4、5中取出两个组成一个两位数,分别满足下面的条件:(1)是2的倍数(2)是5的倍数(3)既是2的倍数,又是5的倍数例2 在方框里填上适当的数字,使得到的三位数同时是3和5的倍数。
3.4 质数与合数第一部分知识清单➢一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
如2、3、5都是质数。
➢一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
如4、6、9都是合数。
➢1的因数只有1个。
➢1既不是质数,也不是合数。
➢质数与合数的个数都是无限的,没有最大的质数或合数。
最小的质数是2,最小的合数是4。
其中,2是唯一一个既是偶数又是质数的数。
➢自然数(不包括0)可以分成质数、合数和1三大类。
第二部分典型例题例1:将分别标有1、2、3、4、5的五张卡片放在一个口袋里,从口袋里任意摸出一张,摸后放回,下面()说法是正确的。
A.摸到奇数的可能性比偶数的大B.摸到偶数的可能性最大C.摸到质数的可能性最小D.摸到合数的可能性最大答案:A分析:找出1、2、3、4、5中奇数、偶数、质数、合数的个数,再根据数量的多少进行比较,数量最多的,摸到的可能性最大,数量最少的,摸到的可能性最小,数量相等的,摸到的可能性一样。
详解:五张卡片中奇数有1、3、5共3个;偶数有2、4共2个;质数有2、3、5共3个;合数只有4共1个。
3=3>2>1所以摸到奇数、质数的可能性相等,摸到偶数的可能性居中,摸到合数的可能性最小。
故答案为:A点睛:本题主要考查可能性的大小,找出奇数、偶数、质数、合数的个数是解题的关键。
例2:甲数是一个质数,乙数是一个合数,它们的和是11,甲、乙两数相乘的积最小是( ),把这个乘积分解质因数是( )。
答案:18 18=2×3×3分析:一个数只有1和它本身两个因数,这个数叫做质数。
一个数除了1和它本身两个因数,还有其他的因数,这个数叫做合数。
先把11拆分两个数相加,找出符合题意的所有情况,再找出最小的积即可;分解质因数是将合数写成几个质数相乘的形式表示出来。
据此解答。
详解:11=1+10=2+9=3+8=4+7=5+6符合题意的只有2+9、3+8、4+7、5+6;2×9=183×8=244×7=285×6=3018<24<28<3018=2×3×3甲数是一个质数,乙数是一个合数,它们的和是11,甲、乙两数相乘的积最小是18,把这个乘积分解质因数是18=2×3×3。
小学数学五年级质数合数知识点总结
1、除了0和1之外的自然数按因数的个数来分:质数、合数
(1)、质数(或素数):只有1和它本身两个因数。
(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)、1:只有1个因数。
“1”既不是质数,也不是合数。
◆最小的质数是2,最小的合数是4,连续的两个质数是2、3。
◆每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
◆除了2和5,其余质数的各位都是1、3、7、9
◆100以内的质数有25个分别是:
(2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97)
2、100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13,的倍数,是的就是合数,不是的就是质数。
关系:奇数x奇数=奇数质数x质数=合数
A的最小因数是:1;最小的奇数是:1;
A的最大因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
3、互质数:公因数只有1的两个数,叫做互质数。
互质情况:
两个质数的互质数如:5和7
两个合数的互质数如:8和9
一质一合的互质数如:7和8
4、两数互质的特殊情况:
(1)1和任何自然数互质;
(2)相邻两个自然数互质;
(3)两个质数一定互质;
(4)2和所有奇数互质;
(5)质数与比它小的合数互质;
三、注意事项
把合数写在右边,比如36=2x2x3x3就不写成2x2x3x3=36;
短除法是除法的一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数。
分解质因数时:合数写在左边,右边写成质因数相乘的形式,右边不能出现合数。
小学数学五年级奇数和偶数知识点总结
偶数:自然数中,能被2整除的数叫做偶数。
奇数:自然数中,不能被2整除的数叫做奇数。
注:
1、0也是偶数。
2、一个整数是偶数还是奇数,是这个整数自身的一种性质,这种性质,叫做奇偶性
3、奇数和偶数的三个最常见的性质:
(1)任何一个奇数一定不等于任何一个偶数。
(2)相邻的两个自然数总是一奇一偶。
(3)有趣的运算规律:
1)偶数±偶数=偶数
4)偶数x偶数=偶数
2)奇数±奇数=偶数 3)偶数±奇数=奇数
5)偶数x奇数=偶数 6)奇数x奇数=奇数
1)任意个偶数之和或差,结果必是偶数;
2)奇数个奇数之和或差,结果必是奇数;
3)偶数个奇数之和或差,结果必是偶数;
4)任意个奇数之积必是奇数;
5)在连乘中,有一个或一个以上因数是偶数,其积必为偶数
6)两数之和,相同为偶,不同为奇。