Li_2SiO_3粉体的固相法合成及低温烧结的研究
- 格式:pdf
- 大小:288.08 KB
- 文档页数:4
实验一固相法(solid-phase method)合成粉体粉体(powder)是大量固体粒子的集合系,是在物质本质结构不发生改变的情况下,分散或细化而得到的固态颗粒,但具有与固体不尽相同的性质。
粉体的特性,诸如颗粒度、颗粒形状、粒度分布、比表面积、团聚状态、吸附性质等对技术陶瓷的烧结性及显微结构有着决定性的影响,从而影响技术陶瓷的性能。
因此,制备质量优良的粉体是获得性能优越的技术陶瓷制品的重要基础。
固相法是制备技术陶瓷粉体的重要方法之一,主要通过固相反应得到粉体。
固相法制备粉体技术在技术陶瓷粉体的工业生产中,应用非常广泛。
固相法制备的粉体颗粒一般为几个微米~数十微米之间。
下面以BaTiO3粉体的制备为例,介绍固相法制备粉体的工艺过程。
一.原料碳酸钡(BaCO3) ,分析纯:二氧化钛(TiO2),分析纯。
二.仪器和设备氧化铝坩埚,烧杯,球磨机,高温炉(硅碳棒作发热体,Tmax = 1350 ℃,Pt-Rh-Pt热电偶测温), 干噪箱,电子天平。
三.实验步骤1 .配料计算预制备20 克BaTiO3粉体,计算所需要的BaCO3和TiO2用量。
其中,Ba /Ti (摩尔比)= l : 1 。
2 .称料在电子天平上分别称取所需要的BaCO3和TiO2,精确到0.01 克,放入烧杯中备用。
3 .混料采用湿式球磨混合的方法,将BaCO3和TiO2粉末原料进行充分混合。
球磨过程中,应采用玛瑙球,盛料容器应选用玻璃质或塑料质,避免使用铁质容器,以免铁质等受主杂质的混入,对BaTiO3陶瓷的电学性能产生不利影响。
料:球:水(质量比)=1 : l.5 : 2 ,球磨时间为20 -24 小时。
所用的水选用蒸馏水。
4 ,干燥将经球磨混合的原料放入烧杯中,然后在干燥箱中进行干燥处理:T=105℃,t = 12h 。
5 .焙烧将干混合料放入坩埚中,然后移入高温炉中进行熔烧。
焙烧的温度和时间为:T =1100-1150 ℃,t =2-4h,从而得到BaTiO3粉体。
粉末冶金常用烧结方法《often-used teehnigues in powder metallurgy sintering》摘要:粉末冶金是一门重要的零件成形技术。
粉末冶金新技术、新工艺的不断出现,必将促进高技术产业的快速发展,也必将带给材料工程和制造技术光明的前景。
目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。
因此,大力发展粉末冶金新技术的研究,对提高我国粉末冶金产品的档次和技术水平,缩短与国外先进水平的差距具有非常重要的意义。
粉末冶金烧结就是将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。
烧结是粉末冶金过程中最重要的工序。
在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
Abstract:Powder metallurgy forming technology is an important part。
New technology of powder metallurgy technologies, emerging, will promote the rapid development of high-tech industry, will bring brighter prospects of material engineering and manufacturing technology. At present, the low overall level of powder metallurgy industry in China, process and equipment behind, compared with foreign advanced technical level there is a large gap. Therefore, development of study on the new technology of powder metallurgy, on improving the grade of powder metallurgical products and technology, reduced the gap with foreign advanced level has very important significance. Powder metallurgy sintering powder or powder Compact is strengthening and densification of products by the heating method and technology. Sintering is the most important process of powder metallurgy process. During the sintering process, due to changes in temperature of the Compact of powder particles bond between physical and chemical changes, thus increasing the resistivity of sintered products, strength, hardness and density, reduces the porosity of densification and grain structure.关键词:粉末冶金(Powder metallurgy),烧结(Sintering),技术(technology),粉末冶金烧结是使压坯或松装粉末体进一步结合起来,以提高强度及其他性能的一种高温处理工艺。
研究生课程论文封面课程名称 材料制备与合成开课时间 10-11学年第一学期学院 数理与信息学院学科专业 凝聚态物理学号 2009210663 姓名 朱伶俊学位类别 理学任课教师 李正全交稿日期成绩评阅日期评阅教师签名浙江师范大学研究生学院制低温固相合成综述目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。
人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。
近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。
低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。
其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。
固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。
1、低温固相合成的发展固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶工艺,将制得的陶器用作生活日用品。
但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。
自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。
直到1912年,Hedvall在Berichte 杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。
事实上,许多固相反应在低温条件下便可发生。
早在1904年,Pfeifer等发现加热[Cr(en)3]Cl3或[Cr(en)3](SCN)3分别生成cis-[Cr(en)2Cl2]Cl和trans-[Cr(en)2(SCN)2]SCN;1963年,Tscherniajew等首先用K2[PtI6]与KCN固-固反应,制取了稳定产物K2[Pt(CN)6]。
Al2O3陶瓷材料中添加不同量ZrO2的力学性能影响目的:分析在Al2O3陶瓷材料中添加不同量的ZrO2后,陶瓷的力学性能变化以及耐磨损的效果,从而得到最优的Al2O3陶瓷材料中ZrO2添加量。
方法:运用热压烧结法制备Al2O3陶瓷,第一组采用99.6vol% Al2O3(AD995)、第二组采用Al2O3中添加15vol%的ZrO2,第三组采用Al2O3中添加25vol%的ZrO2。
针对符合材料细观力学理论,并充分考虑到ZrO2的相变特性,建立起了两者之间的力学结构模型。
结果:在氧化铝材料中添加了细化氧化锆晶体后,陶瓷材料的致密性有了明显提升,三组实验中所制得的陶瓷材料中的力学性能图线呈现应力-应变曲线类线性关系。
第一组陶瓷的断裂韧性为5.38MPa·m0.5,第二组陶瓷材料的断裂韧性为8.37 MPa·m0.5,较上一组实验的断裂韧性提升了大约50%;第三组实验所制得的陶瓷材料的断裂韧性为10.53 MPa·m0.5。
结论:进而说明,伴随着ZrO2增加量的提升。
陶瓷的弹性模量降低而断裂韧性增加,这一变化趋势与实验结果有良好的一致性。
未增加ZrO2材料层的磨损形式主要是磨粒磨损,而两组增加了加ZrO2材料层的磨损形式主要是黏着磨损。
1 引言陶瓷材料是人类应用最早的材料之一。
它是一种天然或人工合成的粉状化合物,经过成形或高温烧结,由金属元素和非金属的无机化合物构成的多相固体材料川。
陶瓷材料具有耐高温、耐腐蚀、耐磨损、高强度、高硬度、抗氧化等诸多优点,近年来逐渐从传统应用行业扩展到航空航天、生物医疗、汽车、建筑等更为广阔的应用领域。
但氧化铝陶瓷材料由于本质上是一种脆性材料,由于自身结构和键性的原因,滑移系统少,位错产生和运动困难,导致韧性较低,也严重限制了其应用和发展。
ZrO2增韧Al2O3陶瓷是最早开发的Al2O3陶瓷基复合材料。
ZrO2自身马氏体转变引起的裂纹韧化和残余应力韧化可使其韧性得到显著提高,这也是对Al2O3陶瓷增韧使用最多且效果最好的增韧方法之一[2-3]。
Li2SiO3粉体的固相法合成及低温烧结的研究作者:林惠星杨爱霞李蔚郭震来源:《佛山陶瓷》2012年第07期摘要:本文主要对Li2SiO3粉体的固相法合成及低温烧结进行了研究。
研究结果表明:原料浓度、混合介质对Li2SiO3相的合成有一定的影响。
选择乙醇为球磨介质、并采用高浓度的原料有利于Li2SiO3相的生成。
另外,添加B2O3-MgO复合助剂可有效地降低Li2SiO3材料的烧结温度。
关键词:Li2SiO3粉体;固相合成;低温烧结1 引言Li2SiO3是硅酸锂材料系列中一种重要的新型材料,同时具有多种优异性能,在能源和环保领域中有巨大的潜在价值。
如:Li2SiO3具有良好的高温机械性能和物理化学性质[1,2],以及对氚的溶解性,可用作增殖反应堆材料[3-5]。
同时,Li2SiO3结构中具有SiO4四面体骨架结构,且是离子传导,有可能成为快离子导体理想的基质材料[6,7],在微型电池等工业领域具有应用潜力。
此外,Li2SiO3还可用于CO2的吸收和释放,缓解温室效应[8,9]。
因此,近年来,对Li2SiO3粉体的研究越来越受到人们的广泛关注。
制备Li2SiO3粉体的方法有很多,如沉淀法、溶胶-凝胶法、水热法等。
但最常用的还是固相法。
固相法是一种传统的粉体合成方法,具有工艺简单、成本低等优点,最适合于工业生产。
但该方法合成Li2SiO3粉体还存在一些缺点,最突出的问题是:反应过程中常会伴随有中间相Li2Si2O5或SiO2杂相存在,即使在高温下也很难生成纯的Li2SiO3相。
在Heriberto[1]等人的报道中,不管Li/Si的比例是多少,都没有得到纯的Li2SiO3相。
所以,如何能在一定温度下合成纯的Li2SiO3材料成为本文的研究重点。
本研究通过改变介质、加入过量锂源等条件来研究粉体相的变化,以寻求一种能够生成纯Li2SiO3相的方法。
同时,对所得Li2SiO3粉体的低温烧结展开研究。
2 样品的制备及性能测试2.1 Li2SiO3粉体的合成及Li2SiO3陶瓷的烧结以Li2CO3、SiO2为原料,分别用乙醇和水为介质合成Li2SiO3粉体。
低温固相合成的发展现状与研究进展???摘要:本文对低温固相合成这种无机合成新方法进行综述,介绍了我国近年纳米材料、发光材料、半导体材料的低温固相合成的技术研究现状,并对其发展方向提出展望.关键词:低温固相合成;纳米材料;发光材料;半导体材料Low-Temperature Solid-State Synthesis of DevelopmentStatus and Research Progress???Abstract:This paper are reviewed some new method about the Low-temperature solid-State synthesis of inorganic synthesis. The Nano-materials Luminescent materials Semiconductor materials by solid state reactions at low temperature in recent years, these synthetic technologies are reviewed, and development direction for this field is put out. Key words:Low-Temperature Solid-State Synthesis;Nano-materials;Luminescent materials;Semiconductor materials低温固相合成化学是室温或近室温(小于40℃)条件下的固-固相化学反应是近几年刚刚发展起来的一个新研究领域。
相对于传统的高温固相反应而言,低温固相反应可以合成一些热力学不稳定产物或动力学控制的化合物,这对人们了解固相反应机理,尽早实现利用固相化学反应行定向合成和分子装配大有益处。
此外,从能量学和环境学的角度考虑,低温固相反应可大大节约能耗,减少三废排放,是绿色化工发展的一个主要趋势。
1引言堇青石(2MgO ·2Al 2O 3·5SiO 2)陶瓷具有较低的介电常数和与单晶硅相匹配的热膨胀系数,是制备低烧成温度衬底的理想材料[1~4]。
但堇青石玻璃熔点较高(1600℃),由于堇青石陶瓷液相粘度大,烧结温度范围较窄,在1350℃以上才能烧得致密陶瓷[5]。
为降低烧结温度选择合适的矿物原料和助熔剂是制备堇青石粉体的关键。
关于低温合成堇青石已经有了一些研究[6~9],其中一些研究与堇青石基微晶玻璃的低温烧结行为有关[10,11]。
研究发现,K 2O 、Na 2O 、Li 2CO 3等碱性氧化物能有效降低堇青石的烧结温度。
钾长石是陶瓷坯体配料和玻璃熔剂中的常用矿物原料,由于钾长石中钾钠氧化物含量较高且廉价可以用作合成堇青石的熔剂和原料来源[12-14]。
本实验选用的是固相合成法,固相合成法是目前工业生产堇青石最常用的方法,本实验的目的就是在工业生产的要求下,能够降低堇青石的合成温度,实验是高岭土-滑石-氧化铝体系,天然钾长石矿物中不仅含有大量碱金属还有少量盐物质,经大量研究表明添加碱金属有利于降低合成温度,从而降低生产成本。
2实验原料及制备实验采用固相合成法,用“高岭土-滑石-氧化铝”系统进行堇青石陶瓷的制备。
配方组成以天然矿物原料为主,添加化学纯MgO 、A l 2O 3按照堇青石(2MgO ·2A l 2O 3·5SiO 2)摩尔比进行混合,其中高岭土和钾长石成分见表1和表2。
以堇青石化学组成(其质量百分比SiO 251.36%,Al 2O 334.86%,MgO 13.78%)为基准,添加堇青石的低温合成与表征康桂峦1任雪潭2刘艳春1(1.广州市红日燃具有限公司,广州510430;2.西南科技大学,绵阳621010)收稿日期:2020-04-22作者简介:康桂峦(1989.9-),硕士研究生,助理工程师,主要从事无机非金属材料研究。
DOI 码:10.3969∕j.issn.1005—0639.2020.03.003摘要堇青石具有很多优异的性能,被广泛应用于耐火材料,红外辐射陶瓷及计算机集成电路基片等。