通信原理随机过程6
- 格式:ppt
- 大小:3.83 MB
- 文档页数:66
第三章 随机过程学习目标通过对本章的学习,应该掌握以下要点: 随机过程的基本概念随机过程的数字特征(均值、方差、相关函数);平稳过程的定义、各态历经性、相关函数和功率谱密度;高斯过程的定义和性质、一维概率密度函数;随机过程通过线性系统、输出和输入的关系;窄带随机过程的表达式和统计特性;正弦波加窄带高斯过程的统计特性;高斯白噪声及其通过理想低通信道和理想带通滤波器。
3.1 内容概要3.1.1 随机过程的基本概念随机过程是一类随时间作随机变化的过程,具有不可预知性,不能用确切的时间函数来描述。
1.定义角度一:随机过程ξ(t )是随机试验的全体样本函数{ξ1 (t ), ξ2 (t ), …, ξn (t )}的集合。
角度二:随机过程ξ(t )是在时间进程中处于不同时刻的随机变量的集合。
这说明,在任一观察时刻t 1,ξ(t 1)是一个不含t 变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。
研究随机过程正是利用了它的这两个特点。
2.分布函数和概率密度函数 一维分布函数:ξ(t )在11111(,)[()]F x t P t x ξ=≤含义:随机过程ξ(t )在t 1时刻的取值ξ(t 1)小于或等于某一数值x 1的概率。
如果存在1111111),(),(x t x F t x f ∂∂=则称111(,)f x t 为ξ(t )的一维概率密度函数。
同理,任意给定12n t t t T ∈ ,,,,则ξ(t )的n 维分布函数为{}12121122(,,,;,,)(),(),,()n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤如果此能在n21n 21n 21n n n 21n 21n x )t x ()t x (∂∂∂∂= x x t t x x F t t x x f ,,,;,,,,,,;,,,则称其为ξ(t )的n 维概率密度函数。
显然,n 越大,对随机过程统计特性的描述就越充分。
通信原理辅导及习题解析(第六版)第3章随机过程本章知识结构及内容小结[本章知识结构][知识要点与考点]1. 随机过程的基本概念 (1)随机过程的定义随机过程可从样本函数与随机变量两种角度定义。
第一,随机过程是所有样本函数的集合;第二,随机过程可以看作实在时间进程中处于不同时刻的随机变量的集合。
(2)随机过程的分布函数 ① n 维分布函数12121122(,,,;,,,){(),(),,()}n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤② n 维概率密度函数1212121212(,,,;,,,)(,,,;,,,),,,n n n n n n nF x x x t t t f x x x t t t x x x ∂=∂∂∂维数n 越大,对随机过程统计特征的描述就越充分。
(3)随机过程的数字特征 ① 均值(数学期望)1[()](,)()E t xf x t dx a t ξ∞-∞==⎰均值表示随机过程的样本函数曲线的摆动中心。
② 方差2222[()]{()[()]}[()]()()D t E t E t E t a t t ξξξξσ=-=-=方差表示随机过程在时刻t 相对于均值的偏离程度。
③自相关函数1212(,)[()()]R t t E t t ξξ=自相关函数目的是为了衡量在任意两个时刻上获得的随机变量之间的关联程度。
④协方差函数1211221212(,){[()()][()()]}(,)()()B t t E t a t t a t R t t a t a t ξξ=--=-协方差函数对随机过程在任意两个时刻上的随机变量与各自均值的差值之间的相关联程度进行描述。
⑤互相关函数,1212(,)[()()]R t t E t t ξηξη=互相关函数用来衡量两个随机过程之间的相关程度。
2. 平稳随机过程 (1)定义 ①严平稳随机过程若一个随机过程()t ξ的任意有限维分布函数与时间起点无关,则称为严平稳的,即:()()12121212,,,,,,,,,,n n n n n n f x x x t t t f x x x t t t =+∆+∆+∆②宽平稳随机过程若一个随机过程()t ξ的均值为常数,自相关函数仅于时间间隔21t t τ=-有关,则称为宽平稳,即:()()()12, ,E t a R t t R ξτ==⎡⎤⎣⎦(2)各态历经性若随机过程的任一实现,经历了随机过程的所有可能状态,则称其是各态历经的,即随机过程的数字特征,可以由其任一实现(样本函数)的数字特征来代表。
通信原理复习资料 一、基本概念 第一章1、模拟通信系统模型模拟通信系统是利用模拟信号来传递信息的通信系统 2、数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统 3、数字通信的特点 优点:(1)抗干扰能力强,且噪声不积累 (2)传输差错可控(3)便于处理、变换、存储(4)便于将来自不同信源的信号综合到一起传输 (5)易于集成,使通信设备微型化,重量轻 (6)易于加密处理,且保密性好 缺点:(1)需要较大的传输带宽 (2)对同步要求高 4、通信系统的分类(1)按通信业务分类:电报通信系统、电话通信系统、数据通信系统、图像通信系统 (2)按调制方式分类:基带传输系统和带通(调制)传输系统 (3)调制传输系统又分为多种调制,详见书中表1-1 (4)按信号特征分类:模拟通信系统和数字通信系统 (5)按传输媒介分类:有线通信系统和无线通信系统 (6)按工作波段分类:长波通信、中波通信、短波通信(7)按信号复用方式分类:频分复用、时分复用、码分复用 5、通信系统的主要性能指标:有效性和可靠性 有效性:指传输一定信息量时所占用的信道资源(频带宽度和时间间隔),或者说是传输的“速度”问题。
数字通信系统模型模拟通信系统模型可靠性:指接收信息的准确程度,也就是传输的“质量”问题。
(1)模拟通信系统:有效性:可用有效传输频带来度量。
可靠性:可用接收端最终输出信噪比来度量。
(2)数字通信系统:有效性:用传输速率和频带利用率来衡量。
可靠性:常用误码率和误信率表示。
码元传输速率R B :定义为单位时间(每秒)传送码元的数目,单位为波特(Baud ) 信息传输速率R b :定义为单位时间内传递的平均信息量或比特数,单位为比特/秒 6、通信的目的:传递消息中所包含的信息7、通信方式可分为:单工、半双工和全双工通信8、信息量是对信息发生的概率(不确定性)的度量。
一个二进制码元含1b 的信息量;一个M 进制码元含有log 2M 比特的信息量。
第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。
(2) 随机过程:没有确定的变化形式。
每次对它的测量结果没有一个确定的变化规律。
数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。
随机信号和噪声统称为随机过程。
1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。
每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。
无穷多个样本函数的总体叫做随机过程。
随机过程具有随机变量和时间函数的特点。
在进行观测前是无法预知是空间中哪一个样本。
在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。
随机过程是处于不同时刻的随机变量的集合。
设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。
随机变量的统计特性可以用分布函数或概率密度函数来描述。
把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。
同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。
2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。
数字特征是指均值、方差和相关系数。
是从随机变量的数字特征推广而来的。
(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。
积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。