通信原理随机过程
- 格式:pdf
- 大小:1.02 MB
- 文档页数:11
第三章 随机过程学习目标通过对本章的学习,应该掌握以下要点: 随机过程的基本概念随机过程的数字特征(均值、方差、相关函数);平稳过程的定义、各态历经性、相关函数和功率谱密度;高斯过程的定义和性质、一维概率密度函数;随机过程通过线性系统、输出和输入的关系;窄带随机过程的表达式和统计特性;正弦波加窄带高斯过程的统计特性;高斯白噪声及其通过理想低通信道和理想带通滤波器。
3.1 内容概要3.1.1 随机过程的基本概念随机过程是一类随时间作随机变化的过程,具有不可预知性,不能用确切的时间函数来描述。
1.定义角度一:随机过程ξ(t )是随机试验的全体样本函数{ξ1 (t ), ξ2 (t ), …, ξn (t )}的集合。
角度二:随机过程ξ(t )是在时间进程中处于不同时刻的随机变量的集合。
这说明,在任一观察时刻t 1,ξ(t 1)是一个不含t 变化的随机变量。
可见,随机过程具有随机变量和时间函数的特点。
研究随机过程正是利用了它的这两个特点。
2.分布函数和概率密度函数 一维分布函数:ξ(t )在11111(,)[()]F x t P t x ξ=≤含义:随机过程ξ(t )在t 1时刻的取值ξ(t 1)小于或等于某一数值x 1的概率。
如果存在1111111),(),(x t x F t x f ∂∂=则称111(,)f x t 为ξ(t )的一维概率密度函数。
同理,任意给定12n t t t T ∈ ,,,,则ξ(t )的n 维分布函数为{}12121122(,,,;,,)(),(),,()n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤如果此能在n21n 21n 21n n n 21n 21n x )t x ()t x (∂∂∂∂= x x t t x x F t t x x f ,,,;,,,,,,;,,,则称其为ξ(t )的n 维概率密度函数。
显然,n 越大,对随机过程统计特性的描述就越充分。
第3章随机过程3.1 随机过程基本概念自然界中事物的变化过程可以大致分成为两类:(1) 确定性过程:其变化过程具有确定的形式,数学上可以用一个或几个时间t的确定函数来描述。
(2) 随机过程:没有确定的变化形式。
每次对它的测量结果没有一个确定的变化规律。
数学上,这类事物变化的过程不可能用一个或几个时间t的确定函数来描述。
随机信号和噪声统称为随机过程。
1. 随机过程的分布函数随机过程定义:设S k(k=1, 2, …)是随机试验。
每一次试验都有一条时间波形(称为样本函数),记作x i(t),所有可能出现的结果的总体{x1(t), x2(t),…, x n(t),…}构成一随机过程,记作ξ(t)。
无穷多个样本函数的总体叫做随机过程。
随机过程具有随机变量和时间函数的特点。
在进行观测前是无法预知是空间中哪一个样本。
在一个固定时刻t1,不同样本的取值x i(t1)是一个随机变量。
随机过程是处于不同时刻的随机变量的集合。
设ξ(t)表示一个随机过程,在任意给定的时刻t1其取值ξ(t1)是一个一维随机变量。
随机变量的统计特性可以用分布函数或概率密度函数来描述。
把随机变量ξ(t1)小于或等于某一数值x1的概率记为F1(x1, t1),即如果F1对x1的导数存在,即ξ (t)样本函数的总体(随机过程)11{()}P t xξ≤11111(,){()}F x t P t xξ=≤称为ξ(t)的一维概率密度函数。
同理,任给t 1, t 2, …, t n ∈T, 则ξ(t)的n 维分布函数被定义为为ξ(t)的n 维概率密度函数。
2. 随机过程的数字特征用数字特征来描述随机过程的统计特性,更简单直观。
数字特征是指均值、方差和相关系数。
是从随机变量的数字特征推广而来的。
(1) 数学期望(均值)表示随机过程的n 个样本函数曲线的摆动中心,即均值。
积分是对x 进行的,表示t 时刻各个样本的均值,不同时刻t 的均值构成摆动中心。