高二文科期末考试试卷
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
高二第一学期期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分)1.不等式250x x -≥的解集是 ( ) A .[0,5] B .[5,)+∞ C .(,0]-∞ D .(,0][5,)-∞+∞2.椭圆2212516x y +=的离心率为( ) A .35 B .45C .34D .16253.等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为 ( )A .32B .20C .16D .104.抛物线y = -2x 2的准线方程是 ( ) A .x=-21 B.x=21 C .y=81 D .y=-815. 数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1306.椭圆2211625x y +=的焦点为F 1,F 2,P 为椭圆上一点,若12PF =,则=2PF ( )A.2B.4C.6D.8 7.“1x >”是“2x x >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.双曲线192522=-y x 的渐近线为( )A. .x y 53±= B. 3x -5y = 0 C. 3x +5y = 0 D. 3y -5x = 09. 在ABC ∆中,60B =,2b ac =,则ABC ∆一定是 ( ) A.直角三角形 B.等边三角形 C.锐角三角形 D.钝角三角形10.已知12=+y x ,则y x 42+的最小值为 ( ) A .8 B .6 C .22 D .2311.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是( )A .27海里B .214海里C .7海里D .14海里12.若不等式()()222240a x a x -+--<对任意实数x 均成立,则实数a 的取值范围 是 ( )A .[]2,2- B .(]2,2- C .()2,+∞ D .](,2-∞二、填空题(本大题共4小题,每小题5分,共20分)13、在条件y x z y x y x +=⎪⎩⎪⎨⎧≤+-≤>2,01221目标函数下则函数z 的最大值为 . 14、命题:“存在一个实数x ,使得23+x =0”的否定形式为: 。
第一学期期末考试高二数学试题一选择题1.椭圆13610022=+y x 的焦距等于( ). A .20B .16C .12D .82.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( ).A .抽签法B .随机数表法C .系统抽样法D .分层抽样法3.已知函数()2xf x =,则'()f x =( ).A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x4.已知点F 是抛物线24y x =的焦点,点P 在该抛物线上,且点P 的横坐标是2, 则||PF =( ).A .2B .3C .4D .5 5.已知事件A 与事件B 发生的概率分别为()P A 、()P B ,有下列命题:①若A 为必然事件,则()1P A =. ②若A 与B 互斥,则()()1P A P B +=. ③若A 与B 互斥,则()()()P A B P A P B ⋃=+.其中真命题有( )个.A .0 B .1 C .2 D .36.“0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.命题“2,210x R x ∀∈+>”的否定是( ).A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+>C .200,210x R x ∃∈+≤D .200,210x R x ∃∈+< 8.函数32y x x x =--的单调递增区间为( ) .A .[)1,1+3⎛⎤-∞-∞ ⎥⎝⎦和, B .113⎡⎤-⎢⎥⎣⎦C .[)1,1+3⎛⎤-∞-⋃∞ ⎥⎝⎦, D .113⎡⎤-⎢⎥⎣⎦,9.执行右边的程序框图,如果输入5a =, 那么输出=n ().A .2B .3 C .4D .510.已知椭圆22219x y b +=(03)b <<,左右焦点分别为1F ,2F ,过1F 的直线交椭圆于,A B 两点,若22||||AF BF +的最大值为8,则b 的值是( ). A . B C D二、填空题:(本大题共4题,每小题5分,共20分.请将答案填写在答卷相应位置上.)11的渐近线方程为 .12.样本2-,1-,0,1,2的方差为 .13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合0.90.2y x =+(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元. 14.函数32()31f x x x =+-在1x =-处的切线方程是 . 三、解答题:(本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.16.(本小题满分12分)已知22x -≤≤,22y -≤≤,点P 的坐标为(,)x y .(1)求当,x y R ∈时,点P 满足22(2)(2)4x y -+-≤的概率; (2)求当,x y Z ∈时,点P 满足22(2)(2)4x y -+-≤的概率. 17.(本小题满分14分)设命题p :实数x 满足22430x ax a -+<,其中0a >;命题q :实数x 满足2560x x -+≤;(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为,直线:2l y x =+与圆222x y b +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 的交点为,A B ,求弦长||AB .19.(本小题满分14分)已知3()f x ax bx c =++图象过点1(0,)3-,且在1x =处的切线方程是31y x =--.(1)求)(x f y =的解析式;(2)求)(x f y =在区间[]3,3-上的最大值和最小值. 20.(本小题满分14分)已知动直线l 与椭圆C :22132x y +=交于P ()11,x y 、Q ()22,x y 两个不同的点,且△OPQ 的面积OPQ S ∆O 为坐标原点.(1)证明2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(3)椭圆C 上是否存在点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===? 若存在,判断△DEG 的形状;若不存在,请说明理由.高二数学试题答案一、选择题(本大题共10小题,每小题5分,共50分)三、解答题:(本大题共6题,满分80.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)解:(1)若在志愿者中随机抽取5名,则抽取比例为51204=………………………2分 ∴年龄大于40岁的应该抽取1824⨯=人. ……………………………4分 (2)上述抽取的5名志愿者中,年龄在20至40岁的有3人,记为1,2,3年龄大于40岁的有2人,记为4,5,……………………………………………6分 从中任取2名,所有可能的基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)(3,4),(3,5),(4,5),共10种,…8分其中恰有1人年龄大于40岁的事件有(1,4),(1,5),(2,4),(2,5)(3,4),(3,5),共6种,………………………………10分∴恰有1人年龄大于40岁的概率63105P ==.…………………………………12分 16.(本小题满分12分)解:(1)点P 所在的区域为正方形ABCD 的内部(含边界),……………(1分)满足22(2)(2)4x y -+-≤的点的区域为以(2,2)为圆心,2为半径的圆面(含边界). ……………………(3分)∴所求的概率211244416P ππ⨯==⨯. …………………………(5分) (2)满足,x y ∈Z ,且22x -≤≤,22y -≤≤的整点有25个 …………(8分)满足,x y ∈Z ,且22(2)(2)4x y -+-≤的整点有6个,……………(11分)∴所求的概率2625P =. ………………………………(12分) 17.(本小题满分14分)解(1)由22430x ax a -+<得(3)()0x a x a -⋅-<..................................1分又0a >,所以3a x a <<, (2)分当1a =时,13x <<,即p 为真命题时,实数x 的取值范围是13x <<……4分由2560xx -+≤得23x ≤≤.所以q 为真时实数x 的取值范围是23x ≤≤.…………………………………6分若p q ∧为真,则23x ≤<,所以实数x 的取值范围是[)2,3.……………8分(2) 设{}|3A x a x a =<<,{}|23B x x =≤≤q 是p 的充分不必要条件,则B A ⊂所以021233a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是()1,2.………14分18.(本小题满分12分)解:(1)又由直线:2l y x =+与圆222x y b +=相切得b ==, (2)分由3e =3a == (2)2222123(2)60322x y x x y x ⎧+=⎪⇒++-=⎨⎪=+⎩251260x x ⇒++=…………8分 21245624∆=-⋅⋅=,设交点,A B 坐标分别为()()1122,,,x y x y ………9分则1212126,,55x x x x +=-⋅=从而||5AB ==所以弦长||AB =14分 19.(本小题满分14分)解:(1)11(0)33f c =-⇒=-, (2)'()3f x ax b =+,∴()2'(1)31f a b=+,∴33a b +=-…………3分又∵切点为(1,4)-,∴1(1)43f a b =+-=-………………………5分联立可得1,43ab ==- (2)311()433f x x x =--2'()4f x x ⇒=-,令2'()0402f x x x =⇒-=⇒=±,令2'()0402f x x x >⇒->⇒<-或2x >,令2'()04022f x x x <⇒-<⇒-<<,………………………………10分………12分由上表知,在区间[]3,3-上,当2x =-时,m a x (2)5y f =-=当2x =时,m i n 17(2)3y f ==-………………14分20.(本小题满分14解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y += ①又因为OPQS ∆=所以11||||x y ⋅= ②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+=…………… 2分 当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知0m ≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=, 其中22223612(23)(2)0,km k m ∆=-+->即2232k m +>…(*)又212122263(2),,2323km m x x x x k k -+=-=++所以||PQ ==因为点O 到直线l 的距离为d =所以1||2OPQS PQ d ∆=⋅==又OPQS ∆=整理得22322,k m +=且符合(*)式, 此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+= 综上所述,222212123;2,x x y y +=+=结论成立。
荥高高二文科期末测试题一 选择题1986年,中国邮政发行了“中国民居”特种邮票一套,邮票上的这些民居建筑除了反映各地风俗外,还反映了当地地理环境的重要特征。
读图完成1~2题。
1.关于三邮票民居判断正确的是( )A .①内蒙古民居②陕北民居③云南民居B .①云南民居②陕北民居③内蒙古民居C .①陕北民居②云南民居③内蒙古民居D .①陕北民居②内蒙古民居③云南民居2.民居特点反映所在地区的地理环境特征,关于三民居与其气候特点对应正确的是( )A .①—温差较大,降水季节分配均匀B .②—夏季高温多雨,冬季寒冷干燥C .③—终年高温多雨D .②—湿热的气候3.下图表示我国某种土地资源的分布情况。
与图示内容相符的是( )A .a 水田 b 旱地 c 林地 d 荒山B .a 水田 b 旱地 c 草地 d 林地C .a 水田 b 旱地 c 林地 d 草地D .a 水田 b 林地 c 草地 d 荒山 乌兰布和地区地势低平,引黄灌溉率超过60%,经过近20年的土地开发,耕地面积增加近一倍。
回答4—5题。
4.本区农业发展中存在的主要生态环境问题( )A .沙漠化、水土流失B .盐碱化、石漠化C .沙漠化、盐碱化D .水源短缺、植被破坏5.欲对该地区近20年来的土地利用变更状况进行快速、准确地分析和测评,所需要的图像资料和技术手段为()A.卫星遥感图像、GIS B.地形图、土壤类型分布图C.土壤类型分布图、卫星遥感图像 D.GPS、GISRS、GPS和GIS被统称为3S技术,现已在地理学研究领域和国土整治中得到广泛运用。
据此回答6~7题。
6.考察队所用手持式全球系统信号接收机显示如下界面据此判断该考察队可能()AC.在塔里木盆地勘探石油 D.在河西走廊寻找地下水7.投资商在某城市内进行大型购物中心区位选择时,可利用该城市的GIS系统作综合分析,调取的主要参考图层是()A.地形图层和供应商分布图层 B.服务企业图层和通讯图层C.工业区图层和居住区图层 D.交通图层和人口图层据报载,我国江西省中南部山区出现大片“红色荒漠”,即在亚热带湿润的地区,土壤遭受严重侵蚀,基岩裸露地表出现出类似荒漠化景观的土地退化现象,回答8~10题。
高二文科期末考试题及答案一、选择题(每题2分,共20分)1. 马克思主义哲学认为,世界是:A. 物质的B. 精神的C. 观念的D. 意识的答案:A2. 下列关于中国历史事件的叙述,错误的是:A. 秦始皇统一六国B. 汉武帝开疆拓土C. 唐朝实行科举制度D. 明朝实行闭关锁国答案:D3. 以下属于中国古典文学四大名著的是:A. 《红楼梦》B. 《水浒传》C. 《西游记》D. 《三国演义》E. 《儒林外史》答案:ABCD4. 以下哪个选项不是中国封建社会的“五礼”之一?A. 冠礼B. 婚礼C. 丧礼D. 祭礼E. 宴会答案:E5. 以下哪个国家不是联合国安全理事会常任理事国?A. 中国B. 美国C. 俄罗斯D. 法国E. 印度答案:E二、填空题(每空1分,共10分)1. 我国古代著名的哲学家孔子,其思想被称为________。
答案:儒家思想2. 我国历史上著名的“贞观之治”发生在唐朝,当时的皇帝是________。
答案:唐太宗3. 马克思主义哲学认为,实践是检验真理的唯一标准,这一观点体现了实践的________。
答案:客观性4. 我国古代著名的医学典籍《黄帝内经》主要论述了________和________。
答案:阴阳五行、脏腑经络5. 我国古代的科举制度开始于________朝代。
答案:隋朝三、简答题(每题10分,共20分)1. 简述中国封建社会的“重农抑商”政策。
答案:中国封建社会的“重农抑商”政策是指在封建社会中,政府为了维护国家的经济基础和社会稳定,采取了一系列政策措施,强调农业的重要性,限制商业的发展。
这一政策体现了封建统治者对农业的重视,认为农业是国家的根本,而商业则被视为次要的,甚至有害的。
通过征收高税、限制商人的社会地位等手段,来抑制商业的发展。
2. 阐述中国近代史上的“五四运动”及其意义。
答案:五四运动是中国近代史上一次具有深远影响的爱国民主运动。
1919年5月4日,北京的学生因为对巴黎和会上中国外交的失败感到愤怒,发起了抗议活动,随后迅速蔓延至全国。
2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学(答案在最后)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“00x ∃>,200x x >”的否定是()A .0x ∀>,2x x ≤B .00x ∃>,200x x ≤C .00x x ∃≤,200x x ≤D .0x ∀≤,2x x ≤2.抛物线2y x =-的焦点坐标为() A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .1,04⎛⎫- ⎪⎝⎭D .1,04⎛⎫⎪⎝⎭3.已知a ,b ∈R ,则“0a b >>”是方程“22220x y ax b +++=表示圆”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.在空间直角坐标系中,点A 、B 坐标分别为()3,0,1A -,()2,3,3B -.则A 、B 两点的距离为() A .25B .2C .10D .5055A .22123x y -=B .2214y x -=C .2214y x -=D .22132y x -=6.P 是椭圆22143x y +=上的一点,F 是椭圆的左焦点,O 是坐标原点,已知点M 是线段PF 的中点,且34OM =,则PF =() A .54B .32C .52D .1347.已知圆O :224x y +=与圆22260x y x +--=交于A 、B 两点,则AB =() A .23B 3C .2D .48.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的()A .离心率相等B .焦距相等C .实轴长相等D .虛轴长相等9.M 是椭圆Γ:()222210x y a b a b+=>>上一点,1F ,2F 是椭圆的两个焦点,若122MF MF =,且12MF MF ⊥,则椭圆Γ的离心率为()A .12B 3C 25D 510.已知命题p :椭圆()22210,1x y a a a +=>≠的离心率为e ,若2a >.则230,4e ⎛⎫∈ ⎪⎝⎭;命题q :双曲线()222210,0x y a b a b -=>>的两条渐近线的夹角为θ,若a b =,则90θ=︒.下列命题正确的是() A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝11.M 、N 是双曲线2213y x -=上关于原点O 对称的两点,1F 、2F 是左、右焦点.若12MN F F =,则四边形12MF NF 的面积是() A .23B .3C .4D .612.在平面直角坐标系中,()2,0A ,()0,2B .以下各曲线:①22132x y +=;②()2222x y ++=;③22y x =;④221x y -=中,存在两个不同的点M 、N ,使得MA MB =且NA NB =的曲线是() A .①②B .③④C .②④D .①③二、填空题:本大题共4小题,每小题5分,共20分.13.以双曲线22135x y -=的焦点为顶点,以双曲线22135x y -=的顶点为焦点的椭圆方程为______.14.抛物线24y x =上一点M 到x 轴的距离为6,则点M 到抛物线焦点的距离为______.15.在平面直角坐标系中,过()1,3P -作圆O :221x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为______.16.设1F 、2F 为椭圆Γ:2212521x y +=的两个焦点,P 为Γ上一点且在第二象限.若112PF F F =,则点P的坐标为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题考生根据要求作答. (一)必考题:共60分17.(12分)已知圆C 过()4,3A ,()0,1B -,且圆心C 在直线l :10x y --=上.经过点()4,0M 的直线m 交圆C 于P 、Q 两点. (1)求圆C 的标准方程;(2)若CP CQ ⊥,求直线m 的方程.18.(12分)抛物线()220y px p =>的准线被圆22230x y y +--=截得的弦长为23(1)求p 的值;(2)过点()4,0M 的直线交抛物线于点A 、B ,证明:OA OB ⊥.19.(12分)已知椭圆Γ的对称中心为原点O ,焦点在y 3 (1)求椭圆Γ的离心率;(2)若椭圆Γ的一个焦点为()0,2F ,过F 且斜率为1的直线l 交椭圆于两点A 、B .求椭圆的标准方程并求AOB △的面积.20.(12分)在平面直角坐标系中,点A 、B 的坐标分别为()1,0A -,()1,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为2. (1)求M 的轨迹方程;(2)记M 的轨迹为曲线Γ,过点()1,1P 能否作一条直线l ,与曲线Γ交于两点D 、E ,使得点P 是线段DE 的中点?21.(12分)已知椭圆Γ:()222210x y a b a b+=>>左右焦点分别为1F 、2F 3k 的直线l 交椭圆于两点A 、B ,当直线l 过1F 时,2AF B △的周长为8. (1)求椭圆Γ的方程;(2)设OA 、OB 斜率分别为1k 、2k ,若12k =,求证:1214k k ⋅=,并求当AOB △面积为74时,直线l的方程.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错误、漏涂均不给分,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,曲线C 的参数方程为cos cos 2x y m ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为cos 24πρθ⎛⎫-= ⎪⎝⎭(1)当0m =时,求曲线C 与x 轴交点的直角坐标; (2)直线l 与曲线C 有唯一公共点,求实数m 的值. 23.【选修4-5:不等式选讲】(10分)已知x 、y 、z 均为正实数,且22243x y z ++=. (1)求2x y z ++的最大值; (2)若2y x =,证明:113x z+≥. 2022-2023学年度第一学期高二年级期末教学质量检测试卷文科数学参考答案一、选择题1.A 2.C 3.A 4.B 5.C 6.C 7.A 8.B 9.D 10.C 11.D 12.D 二、填空题13.22185x y +=14.10 15.310x y -+=16.5372⎛-⎝⎭三、解答题17.解:(1)直线AB 的垂直平分线方程为3y x =-+ 与10x y --=联立得,2x =,1y =,即()2,1C 圆C 半径22R CA ==所以,圆C 的标准方程为()()22218x y -+-=.(2)∵22CP CQ ==,CP CQ ⊥∴圆心C 到直线m 的距离2d = 当直线m 的斜率存在时,设直线m 的方程为()4y k x =- 由22121k d k +==+得34k =当直线m 的斜率不存在时,直线m 方程为4x =,C 到m 距离为2 综上可得,直线m 方程为34120x y --=或40x -=. 18.解:(1)圆22230x y y +--=的圆心()0,1C ,半径为2;所以C 到准线距离为1,所以准线方程为1x =- 所以2p =.(2)由(1)得,抛物线标准方程为24y x =. 设直线AB 方程为4x my =+,()11,A x y ,()22,B x y4x my =+与24y x =联立得24160y my --=216640m =+>∆,由韦达定理1216y y ⋅=-,2212121644y y x x ⋅=⋅=12120OA OB x x y y ⋅=+=,即以线段AB 为直径的圆过点M .19.解:(1)设椭圆标准方程为()222210y x a b a b+=>>则有232a b =,因为222c a b =- 所以椭圆离心率63c e a ==. (2)椭圆标准方程为22162y x +=,直线l 的方程为2y x =+设()11,A x y ,()22,B x y ,直线l 方程代入椭圆方程得22210x x +-=. 解得1,2132x -±=所以AOB △的面积12132S OF x x =⋅⋅-= 20.解:(1)设(),M x y ,则1AM y k x =+,1BM yk x =-由2AM AN k k ⋅=得211y yx x ⋅=+-整理得()22221y x x =-≠±所以,点M 得轨迹方程为()22112y x x -=≠.(可以不化为标准方程的形式,限制条件也可以为0y ≠)(2)设()11,D x y ,()22,E x y ,可得221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩两式相减得()()()()12121212102x x x x y y y y +--+-= 由题意,122x x +=,122y y +=,所以12122AB y y k x x -==-直线AB 方程为21y x =-代入()22112y x x -=≠±得,22430x x -+=.∵80∆=-<,∴不存在这样的直线l . 21.解:(1)由题意,48a =,3c e a ==5c =1b = 椭圆Γ的方程为2214x y +=.(2)设直线l 的方程为()10,12y x m m m =+≠≠±,()11,A x y ,()22,B x y , 与椭圆方程联立得,222220x mx m ++-=122x x m +=-,21222x x m =-可得2121211112222y y x m x m m ⎛⎫⎛⎫=++=-⎪⎪⎝⎭⎝⎭所以12121214y y k k x x == ()2222121621115222m AB k x m -⎛⎫=+-=+=- ⎪⎝⎭O 到直线AB 得距离25m d =OAB 的面积()2272S m m =-=解得12m =±,或7m =所以直线l 方程为1122y x =±,或172y x =±. 22.解:(1)2cos 2cos 10y ϕϕ==-=,得2cos ϕ= 所以曲线C 与x 轴交点得坐标为2,02⎛⎫± ⎪ ⎪⎝⎭. (2)cos cossin sin244ππρθρθ+=得22222x y +=2x y +=为直线l 的方程 曲线C 的普通方程为221y x m =+-方程221y x m =+-与2x y +=联立得2230x x m ++-=()1830m ∆=--=得258m =. 23.解:(1)由柯西不等式()()()222211142x y zx y z ++++≥++所以23x y x ++≤,当且仅当21x y z ===时等号成立. (2)证明:因为2y x =,0x >,0y >,0z >, 由(1)得243x y z x z ++=+≤ 即043x z <+≤,所以1143x z ≥+因为()114445529z x z x x z x z x z x z ⎛⎫⎛⎫++=++≥+⋅=⎪ ⎪⎝⎭⎝⎭当且仅当4x zz x=,即21z x ==时,等号成立. 因为043x z <+≤,所以11934x z x z +≥≥+,即113x z+≥.。
2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。
高二文科期末模拟测试一、填空题:1、 已知幂函数()f x 的图像过点(4,2),则1()2f 的值为 。
2、 函数2()l g (2)f x o x =+的定义域为 。
3、 若复数312a i i+-是纯虚数,则实数a 的值为 。
4、 已知集合{}03A x x =<<,集合{}4B x m x m =<<-,且B A ⊆,则实数m 满足的条件是 。
5、 已知()f x 是R 上的减函数,则满足1()(1)f f x >的x 的取值集合为 。
6、 函数()f x 是定义在(2,2)-上的奇函数,当(0,2)x ∈时()21x f x =-,则21(l o g )3f 的值为 。
7、 已知向量(2,1),(3,)a b λ== ,若(2)a b b -⊥ ,则λ= 。
8、 函数()sin(2)cos 23f x x x π=--的最小值为 。
9、 已知命题2:",230"p x R ax x ∃∈+->,如果命题p ⌝是真命题,那么实数a 的取值范围是 。
10、设0x 是方程8lg x x -=的解,且0(,1),()x k k k Z ∈+∈则k = 。
11、函数1()33x x y =-在区间[]1,1-上的最大值为 。
12、在菱形ABCD 中,若AC=4,则CA CB= 13.将函数sin(2)3y x π=-的图像先向左平移6π,然后将所得图像上所有点横坐标变为原来的2倍(纵坐标保持不变)则所得图像对应的函数的解析式为14.若函数23()344f x x x =-+的定义域和值域均为[a,b],则a+b=二、解答题:15. 已知函数()f x 2sin()2cos ,[,]62x x x πππ=+-∈,(1)4sin 5x =,求此时函数()f x 的值;(2)求函数()f x 的值域.16、已知非零向量a 、b满足||a =1 ,且1()()=2a b a b -+(1)12a b a b =若,求向量与的夹角;(2)在(1)的条件下求||a b - .17、已知7sin()2425παα-==,求(1)tan α的值;(2)2sin 22sin 1tan ααα+-的值.18、设命题P:实数22430,,x x ax a a R -+<∈满足命题q:实数x 满足60x --≤2x 280x +->2或x(1)求命题,p q 的解集;(2)0,a p q a ⌝⌝<若且是的必要不充分条件,求的取值范围.19、为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为:21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?20、设函数21()4f x x x =+- (1)若函数()f x 的定义域为[]0,3,求()f x 的值域;(2)若定义域为11[,1]()216a a f x +时,的值域是[-,],求a 的值。
高二上学期期末考试文科数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1、函数()122+-=x x x f 在点()0,1T 处的切线方程是( )A 、x y =B 、1=yC 、0=xD 、0=y2、设抛物线的顶点在原点,焦点与椭圆12622=+yx右焦点重合,则此抛物线的方程是( )A 、y 2=-8xB 、y 2=-4xC 、y 2=8xD 、y 2=4x3、口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是( ) A 、0.42B 、0.28C 、0.7D 、0.34、若a ,b ∈R ,则a >b >0是a 2>b 2的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件5、给出如下程序:INPUT xIF x<0 THEN y=-1 ELSEIF x=0 THEN y=0ELSE y=1 END IF END IF PRINT y END输入x=3时,输出的结果是( ) A..1 B .-1 C .0 D .36、命题“对01,23≤+-∈∀x x R x ”的否定是( )A 、不存在x ∈R ,x 3-x 2+1≤0 B 、01,23≤+-∈∃x x R x C 、01,23>+-∈∃x x R xD 、01,23>+-∈∀x x R x7、某产品的广告费用x 与销售额y 的统计数据如下表:据上表得回归方程b a x b yˆˆˆˆ中的+=为9.4,据此预报广告费用为6万元时销售额约为( )A 、63.6万元B 、65.5万元C 、67.7万元D 、72.0万元8、运行如右图所示的程序框图,则输出的数是5的倍数的概率为( )A 、51B 、101C 、21 D 、2019、函数()⎪⎭⎫⎝⎛≤≤--=232333x x x x f 的值域是( ) A 、⎥⎦⎤⎢⎣⎡-89,89 B 、⎥⎦⎤⎢⎣⎡-2,89C 、⎥⎦⎤⎢⎣⎡-89,2 D 、[]2,2- 10、已知抛物线x y 42=的焦点为F ,A , B 是该抛物线上的两点,弦AB 过焦点F ,且4=AB |,则线段AB 的中点坐标是( ) A 、⎪⎭⎫⎝⎛1,21B 、 ()1,2C 、()0,1D 、()2,311、设21,F F 分别是双曲线)0,0(12222>>=-b a by ax 的左,右焦点,若在双曲线右支上存在点P ,满足212F F PF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率等于( )A 、2B 、2C 、23 D 、3512、已知1F , 2F 是椭圆6222=+y x 的两个焦点,点M 在此椭圆上且︒=∠6021MF F ,则21F MF ∆的面积等于( ) A 、2B 、3C 、2D 、5第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 %. 14、样本数据“1,2,3,4,5,6,7”的标准差等于 (用数字作答)。
2011-2012学年第一学期高二年级物理文科期末考试
班级:_____________ 姓名:_______________ 学号:___________
一、单项选择题(本题共10小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项正确)
1、2011年3月日本大地震发生后,在坍塌的废墟中有大量伤员,为了尽快救出他们,需要使用生命探测仪,这种探测仪器主要接收人体发出的( )
A.可见光 B.红外线 C.紫外线 D.声音
2、无线电波中的短波最适合于利用下列哪种方式传播( )
A.地波 B.天波 C.空间波 D.电磁波
3、下列情况中的物体,能看作质点的是()
A、太空中绕地球运行的卫星; B.正在闯线的百米赛跑运动员
C.匀速行驶着的汽车的车轮; D.正在跃过横杆的跳高运动员
4、交通警察用来检测驾驶员酒精含量的检测器使用的传感器是( )
A.温度传感器 B.压力传感器 C.湿度传感器 D.气体传感器
5、关于家庭电路,下列说法中正确的是( )
A.我国家庭电路采用的是电压为220 V的交流电
B.洗衣机、电冰箱等家用电器使用三孔插座,是为了节约用电
C.在家庭电路中,所有电器一般是串联连接
D.保险丝是为了防止电路发生断路
6、下列说法不.正确的是( )
A.不要在电线上晒衣服
B.不准用剪刀或没有绝缘柄的钳子剪断电线
C.小鸟停在电线上不会触电死亡,是因为两爪间电压很小
D.用测电笔辨别火线与零线时,手不能接触测电笔上的任何金属
7、建立完整的电磁场理论并首先预言电磁波存在的科学家是( )
A.法拉第B.奥斯特 C.赫兹 D.麦克斯韦
8、磁感应强度是0.8 T的匀强磁场中,有一根跟磁感应线垂直、长0.2 m的直导线,以4 m/s的速度在跟磁感线和直导线都垂直的方向上做切割磁感线运动,则导线中产生的感应电动势的大小等于( )
A.0.04 V B.0.64 V C.1 V D.16 V
9、将输入电压为220 V,输出电压为6 V的理想变压器改绕成输出电压为30 V的变压器,副线圈原来是30匝,原线圈匝数不变,则副线圈新增绕的匝数为( ) A.120匝 B.150匝 C.180匝 D.220匝
10、关于产生感应电流的条件,下列说法中正确的是( )
A.只要闭合电路在磁场中运动,闭合电路中就一定有感应电流
B.只要闭合电路中有磁通量,闭合电路中就有感应电流
C.只要导体做切割磁感线运动,就有感应电流产生
D.只要穿过闭合电路的磁感线条数发生变化,闭合电路中就有感应电流
11、某人从高为10m处以某一初速度竖直向下抛出一个小球,在与地面相碰撞后弹起,上升到高为1m处被接住,则在这段过程中()
A.小球的位移大小为9m,方向竖直向下,路程为11m
B.小球的位移大小为11m,方向竖直向上,路程为11m
C.小球的位移大小为9m,方向竖直向下,路程为9m
D.小球的位移大小为11m,方向竖直向上,路程为9m
12、关于速度和加速度的说法中,正确的是()
A.速度是描述运动物体的位置变化大小的物理量,而加速度是描述速度变化的物理量
B.物体速度变化大小和速度变化快慢,在实质上是一个意思
C.加速度大说明物体速度变化大
D.加速度大说明物体速度变化快
一、单项选择题(本题共10小题,每小题5分,共60分.在每小题给出的四个选
二、填空题(本题共2小题,每空2分,共6分.将答案填在题中横线上)
13、根据图5-7所示的电视机的铭牌,可以计算出这台电视机正常工作两小时消耗的电能为________度.
图5-7
14、某运动员在100m赛跑中,起跑时速度为4m/s,过中点50m使得速度为8.6m/s,冲刺时的速度达到10m/s,其成绩为12s,则100m赛跑中该运动员的平均速度为,冲刺时的速度为10m/s,这个速度是。
(选填平均速度或瞬时速度)
三、实验题(本题共6空,每空2分,共12分)
15、右图为某物体的s-t图象,据图象回答:
①在第1s内物体的速度是
②在第2s和第3s内的速度是
③前4s内物体通过的路程为
④前4s内物体通过的位移为
⑤4s内物体的平均速度为
⑥物体返回时的速度是
四、计算题(本题共3题,共24分)
18、一小球以16m/s的速度沿一光滑的斜坡从底端向上滑行,经12s后,小球向下滑行,速度变为8m/s,求小球的加速度的大小和方向。
(5分)
17、磁场中放一根与磁场方向垂直的通电导线,它的电流强度是2.5 A,导线长1 cm,它受到的安培力为5×10-2 N.
求:(1)这个位置的磁感应强度是多大?
(2)如果把通电导线中的电流强度增大到5 A时,这一点的磁感应强度是多大?
(3)如果通电导线在磁场中某处不受磁场力,是否肯定这里没有磁场?(7分)
16、如图4-2-12所示,在磁感应强度为0.2 T的匀强磁场中,长为0.5 m的导体棒AB在金属框架上,以10 m/s的速度向右滑动.R1=R2=20Ω,其他电阻不计,则流过AB的电流大小及方向?(10分)
图4-2-12。