防扭拉杆在动力总成悬置系统固有频率
- 格式:pdf
- 大小:270.82 KB
- 文档页数:3
动力总成悬置系统隔振原理分析及振动解决措施王方;彭宜爱;张兴【摘要】针对动力总成悬置系统对整车振动及乘员舒适性的影响,对悬置系统隔振原理进行分析.根据隔振原理,对某MPV全油门工况下轰鸣问题进行排查,对悬置系统结构进行优化,从而提高了整车的NVH性能.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)010【总页数】4页(P197-200)【关键词】动力总成悬置系统;隔振;分析;解决【作者】王方;彭宜爱;张兴【作者单位】安徽江淮汽车集团股份有限公司,安徽合肥 230601;安徽江淮汽车集团股份有限公司,安徽合肥 230601;安徽江淮汽车集团股份有限公司,安徽合肥230601【正文语种】中文【中图分类】U463.8CLC NO.: U463.8 Document Code: B Article ID: 1671-7988 (2017)10-197-04 随着人们生活水平的提高,汽车乘坐舒适性越来越受到人们的重视。
其中汽车NVH性能是评价汽车舒适性的关键指标之一。
动力总成悬置系统对整车的振动有着较大的影响,它的功能主要是隔振,支撑,限位。
其中支撑和限位在悬置系统的设计中较易实现,隔振功能在实车中受影响的因素较多,不易满足隔振要求。
动力总成悬置系统的首要功能是隔离动力总成振动向车身及车厢内部的传递,尤其是控制发动机在怠速工况下的低频抖动,并隔离发动机在高速运转时引起的车厢内高频噪声。
因此动力总成悬置系统对整车隔振起着至关重要的作用。
悬置系统的合理设计,能有效的起到隔振作用。
1.1 自由振动最简单的振动由重块和弹簧组成,自振频率的计算公式:其中K为弹簧刚度,m为重块质量。
实际上阻尼的存在会导致振动振幅逐渐减小,直至振动完全停止,这种现象称为有阻尼的自由振动。
动力总成的悬置系统阻尼很小,假设忽略不计,简化为最基本的模型,动力总成相当于重块,悬置系统相当于弹簧,因此可计算出悬置系统的自振频率。
The Calculations and Measurements for the Static Stiffness ratio in Three Directions of Typical Vehicle PowertrainRubber MountsA Dissertation Submitted for the Degree of MasterCandidate:Wu ZhipingSupervisor:Prof. Shangguan WenbinSenior Engineer Ye ZhigangSouth China University of TechnologyGuangzhou, China分类号:U463.1学校代号:10561学号:200620201508华南理工大学专业学位硕士学位论文汽车动力总成典型结构橡胶悬置三向静刚度计算分析方法的研究作者姓名:吴志平指导教师姓名、职称:上官文斌、教授申请学位级别:工程硕士学科专业名称:车辆工程研究方向:车辆设计理论与方法论文提交日期:2013年12月04日论文答辩日期:2013年12月01日学位授予单位:华南理工大学学位授予日期:年月日答辩委员会成员:主席:叶志刚委员:邬晴晖赵学智李旻赵志刚摘要汽车在行驶的过程中,由路面不平度、发动机、传动系统等因素引起的振动严重影响汽车的行驶平顺性和乘坐舒适性,随着消费者对汽车行驶性能提出进一步的要求,悬置系统在车辆减振方面的作用也越来越被人们认识到,无论从主机厂还是零部件商,对悬置系统的开发和设计都增加了重视。
如何开发和设计悬置系统已成为NVH工程师一项重要的工作内容,悬置系统的刚度特性和阻尼特性也已成为一套悬置系统设计好坏的重要评价标准。
本文选取了三种常用结构类型的橡胶悬置模型,对其进行结构及性能分析,并在三维软件,如UG中建立其数学模型,对所建立的数学模型进行有限元仿真分析,主要通过Hypermesh软件进行几何模型简化、网格划分及Abaqus软件进行后处理计算,得到各悬置在其局部坐标系下沿三个坐标轴方向的刚度值,并与测试值作比较,确定仿真分析方法的正确性。
发动机-悬置参数设计要求根据人体生理学的研究,人体对振动最敏感的频率范围为4~8Hz,车辆的振动特性要保证人的乘坐舒适性,就要避开4~8Hz时的振动。
在车辆设计中,车身-悬挂系统的设计频率一般在1.9~3Hz,簧下质量的振动频率即轴头跳动频率一般在11~15Hz左右,发动机-悬置系统作为一个振动子系统,它其中的悬置是连接发动机和车身的唯一部件,它不但要支承发动机的重量,而且还起到在发动机和车身之间隔振的作用。
悬置的刚度太大,就起不到有效的隔振作用,太软又会降低其使用寿命。
根据隔振原理,发动机-悬置系统振动的频率要大于车身-悬挂频率的1.4倍,才能起隔振作用。
最理想的是2倍以上。
(最大不大于2.5倍) ,因此发动机-悬置系统振动的最低频率要保证不小于3×2=6Hz,其次,发动机动力总成作为整车动力减振器,其垂向振动频率应为轴头跳动频率的0.8~0.9倍,换成频率就是12~13.5Hz,另外,发动机怠速时的转速约为750~800转∕分,对应激励频率为28Hz(四缸机),它要大于发动机动力总成绕曲轴轴线转动频率的2倍,即28∕2=14Hz。
所以,发动机-悬置系统的设计频率就是6~14Hz。
在这个范围内,频率设计区间越小越好。
根据这个设计原理,如果把发动机-悬置系统的频率固定在6~14Hz的话,就要求车架的最低阶频率(一般即为扭转频率)要保证在大于3Hz和小于6Hz之间。
或者大于15Hz以上。
这要根据车辆设计具体的要求而定。
没有统一的模式;但如果发动机悬置的参数达到合理设计(如刚度、布置角度,安装位置等),能够使发动机动力总成-悬置系统的振动频率在6~14Hz内区间更缩小的话,如8~12Hz,那么对车架的频率要求就会宽松一些。
因此,这是一个系统参数优化与合理匹配的问题。
在汽车研究领域,国内还没有成熟的经验和有用的参考数据,还需作长期、大量的工作来解决。
某车型动力总成悬置系统NVH性能设计与优化摘要:车内振动噪声的主要来源之一是动力总成,隔离发动机振动向车身传递主要靠悬置系统。
动力总成经过必要的减振隔振措施减少其振动向车体的传递,成为汽车开发过程中的一个重要任务,悬置系统开发匹配的好坏很大程度决定了车辆NVH性能的优劣。
因此动力总成悬置系统的合理匹配对降低汽车振动,提高整车NVH性能有着非常重要的作用。
本文建立了动力总成-悬置系统的六自由度数学模型,得到由刚度矩阵和质量矩阵表达的动力总成整体振动的微分方程。
利用MATLAB软件编制动力总成悬置系统固有频率和能量分布矩阵程序,并在ADAMS中建立模型仿真验证程序的正确性。
关键词:动力总成;悬置系统;MATLAB;模态解耦;隔振率;优化引言随着道路条件的改善和汽车悬架系统设计的完善,路面随机激励对汽车舒适性的影响逐步减弱。
又由于节约能源的考虑、市场对能耗低汽车的需求以及对环境保护的要求,汽车发动机在整个汽车质量中所占比重有所上升。
同时,越来越多的汽车采用整体式薄壁结构,使现代汽车越来越强调轻量化,然而发动机的重量却很难降低,从而车身弹性增加,振动趋势上升。
从上述各种原因引起的动力总成振动源在汽车振动中所占比例较大。
由动力总成振动引起的振动有:动力总成刚体振动、传动系统的弯曲振动和扭转振动、各零件的振动。
这些振动还会引起车体内气体共振产生噪声,这就使这种状况变成噪声、机构疲劳强度、以及振动相结合的复杂问题。
所以如何合理地匹配动力总成悬置系统,最大限度地减小向车身传递振动和噪声是汽车减振降噪的主要研究内容之一。
1动力总成悬置系统模型建立将动力总成假设为质量集中在质心处的低速小位移的6自由度刚体,橡胶悬置元件假设为3根互相垂直的线性弹簧模型,在车架视为刚体的情况下建立模型,如图1所示。
图1动力总成悬置系统模型示意图2车型动力总成悬置系统NVH性能设计优化2.1悬置系统的布置形式每个悬置都可以看作由三个相互垂直的粘性弹簧组成的隔振器。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。
汽车动力总成悬置系统作为连接发动机和车身的重要部件,其振动特性直接影响到汽车的乘坐体验和行驶安全。
因此,对汽车动力总成悬置系统的振动进行分析,以及进行优化设计,已经成为汽车研发过程中的重要课题。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、悬置支架、橡胶支座等组成。
其主要功能是减少发动机振动对车身的影响,同时通过合理的布局和设计,提高整车的乘坐舒适性和行驶稳定性。
在汽车行驶过程中,由于发动机的工作特性和路面条件等因素的影响,动力总成悬置系统容易产生振动和噪声。
因此,如何对这种振动进行分析并对其进行优化设计是本研究的重点。
三、汽车动力总成悬置系统振动分析1. 动力学模型建立为了更好地了解动力总成悬置系统的振动特性,需要建立其动力学模型。
该模型应包括发动机的振动特性、悬置支架的结构特性以及橡胶支座的动态特性等。
通过建立模型,可以模拟出汽车在不同路况下的振动情况,为后续的振动分析和优化设计提供依据。
2. 振动特性分析通过动力学模型的分析,可以得出动力总成悬置系统的振动特性。
主要包括系统的固有频率、振型和阻尼比等参数。
这些参数对于理解系统的振动特性和进行优化设计具有重要意义。
四、汽车动力总成悬置系统优化设计1. 设计目标与约束条件在进行优化设计时,需要明确设计目标。
一般来说,优化设计的目标包括提高乘坐舒适性、降低噪声和减少振动等。
同时,还需要考虑一些约束条件,如发动机的安装空间、悬置支架的结构强度等。
2. 优化方法与步骤针对上述设计目标和约束条件,可以采用多种优化方法进行设计。
如多目标优化算法、有限元分析等。
在优化过程中,需要逐步调整系统的参数,如橡胶支座的刚度、阻尼等,以达到最优的振动性能。
五、实例分析以某款汽车的动力总成悬置系统为例,通过建立其动力学模型,对其振动特性进行分析。
《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的快速发展,汽车动力总成悬置系统的性能对于整车舒适性和稳定性越来越重要。
动力总成悬置系统的主要功能是支撑和固定发动机、变速器等重要部件,同时通过减震和隔振技术来降低系统振动对整车的影响。
本文旨在分析汽车动力总成悬置系统的振动问题,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机悬置、变速器悬置等组成,其结构形式和性能直接影响整车的舒适性和稳定性。
在汽车行驶过程中,由于道路不平、发动机运转等因素,动力总成会产生振动和噪声,这些振动和噪声会通过悬置系统传递到车身,影响整车的舒适性和稳定性。
三、汽车动力总成悬置系统振动分析(一)振动来源及传递路径汽车动力总成的振动主要来源于发动机运转、道路不平等因素。
这些振动会通过发动机悬置、变速器悬置等传递到车身,进而影响整车的舒适性和稳定性。
(二)振动问题分析在汽车动力总成悬置系统中,由于设计、制造和装配等因素,可能会产生以下振动问题:1. 悬置系统刚度不足,导致系统在受到外力作用时产生过大变形;2. 悬置系统阻尼不足,导致振动衰减缓慢,影响整车的舒适性;3. 悬置系统与发动机、变速器等部件的连接不紧密,导致振动传递到车身。
四、优化设计方案(一)提高悬置系统刚度为了提高悬置系统的刚度,可以采用高强度材料制作悬置元件,同时优化悬置系统的结构形式,使其能够更好地承受外力作用。
此外,还可以通过增加悬置系统的支撑点数量来提高其整体刚度。
(二)增加悬置系统阻尼为了增加悬置系统的阻尼,可以在系统中加入液压减震器等装置。
这些装置能够有效地吸收和消耗振动能量,从而降低整车的振动和噪声。
(三)优化连接方式为了确保悬置系统与发动机、变速器等部件的连接紧密可靠,可以采用先进的连接方式和技术。
例如,可以采用高强度螺栓、焊接等方式来确保连接部位的牢固性和密封性。
此外,还可以在连接部位设置减震垫等装置,以降低振动传递到车身的幅度。