《一元二次方程根与系数的关系》教案
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
一元二次方程的根与系数的关系——人教版九年级数学上册教案一、教学目标1.了解一元二次方程解的概念和性质,掌握求方程解的方法;2.学会熟练运用求根公式及应用一元二次方程解决实际问题;3.掌握一元二次方程根的数量及其相关系数的关系;4.培养分析、解决实际问题的能力和兴趣。
二、教学重点与难点1.教学重点:掌握一元二次方程根的数量及其相关系数的关系。
2.教学难点:能够运用一元二次方程解决实际问题。
三、教学过程1.复习回顾通过让学生进行口算或板书,回忆一元二次方程的定义和一些基本概念例如:二次项的系数、判别式等。
2.引入新知1.学生通过求解以下方程来感受一元二次方程根的划分:x2−2x+1=0,x2−2x+2=0,x2−2x+3=02.通过口算讨论发现,x2−2x+1=0这个方程有极特殊的一点,即方程的两根重合。
这便引出了一元二次方程解的概念和性质。
3.讨论不同的二次项系数对一元二次方程的根的影响。
4.讲解一元二次方程的解法,介绍求根公式并让学生观察、理解其含义。
3.例题讲解1.练习使用求根公式求解一元二次方程。
2.通过题目的加减乘除,让学生掌握如何将实际问题建立为一元二次方程,运用一元二次方程解决实际问题。
4.拓展练习通过配合精心设计的习题,引导学生总结一元二次方程根的数量和系数的关系。
5.归纳总结1.让学生回想本节课学过的知识点。
2.教师要求学生口头或书面介绍一元二次方程,比如:定义、图像、根的数量等方面的内容。
四、课后作业1.完成课本相关练习和拓展试题。
2.结合生活实际,自编3道一元二次方程及其解决实际问题的例题,写在作业本上。
五、教学反思在本节课的备课过程中,从实际出发,将一元二次方程的解和实际联系起来,让学生能够欣赏数学课程应用的实际面貌,从而激发学生的数学兴趣。
同时,在教学中也要注重实际情况的演示和练习,让学生能够充分接触到不同情境下使用一元二次方程等的运算过程,从而更加灵活地应用数学。
一元二次方程根与系数的关系教学目标:1、掌握一元二次方程根与系数的关系。
2、会利用定理求解一元二次方程两根之和与两根之积。
3、通过学生自己探索,发现根与系数关系,增强学生信心,激发学生对于数学的学习兴趣和探究欲望。
教学重点1、根与系数关系及运用 教学难点1、如何通过求根公式发现韦达定理。
2、如何运用韦达定理解决一些一元二次方程的求解问题。
过程一、复习提问(1)写出一元二次方程的一般式和求根公式。
ax 2+bx+c=0 (a ≠0) x= (b 2-4ac ≥0)(2)求一个一元二次方程,使它两根分别为①2和3;②-4和7;③3和-8;④-5和-2 二、新课讲解如果方程x 2+px+q=0有两个根是x 1,x 2 那么有x 1+ x 2=-p, x 1 •x 2=q猜想:2x 2-5x+3=0,这个方程的两根之和,两根之积是与各项系数之间有什么关系?问题2;对于一元二次方程的一般式是否也具备这个特征?设x 1 、x 2是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则两根之和与两根之积与各项系数之间有什么样的关系? x 1+x 2= x 1·x 2=三、巩固练习a acb b 242-±-a b-ac口答下列方程的两根之和和与两根之积。
1)x 2-3x+1=0 2) x 2-2x=2 3) 2x 2-3x=0 4) 3x 2=1 判断对错,如果错了,说明理由。
1) 2x 2-11x+4=0两根之和11,两根之积4。
2) x 2+2=0两根之和0,两根之积2。
3) x 2+x+1=0两根之和-1,两根之积1。
四、能力提高例题1 已知方程x 2+kx+k+2=0的两个实数根是x 1,x 2且x 12+x 22=4求k 的值 解:(略)引申:(1、若ax 2+bx +c =0 (a ≠0 且 ∆≥0) (1)若两根互为相反数,则b =0; (2)若两根互为倒数,则a =c;(3)若一根为0,则c =0 ; (4)若一根为1,则a +b +c =0 ;(5)若一根为-1,则a -b +c =0; (6)若a 、c 异号,方程一定有两个实数根例题2 方程mx 2-2mx+m-1=0(m ≠0 ) 有一个正根,一个负根,求m 的取值范围。
一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。
过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。
情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。
教学重点】根与系数的关系及运用。
教学难点】定理的发现及运用。
一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。
那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。
二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。
归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
三、运用新知,深化理解1.求下列方程的两根之和与两根之积。
1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。
2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。
《根与系数的关系》教案一、教学目标1. 让学生理解一元二次方程的根与系数之间的关系。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对一元二次方程的解法及应用的理解。
二、教学内容1. 一元二次方程的一般形式:ax^2 + bx + c = 0。
2. 根的判别式:Δ= b^2 4ac。
3. 根与系数的关系:(1) 若有两个实数根,则根的值为:x1 = (-b + √Δ) / (2a),x2 = (-b √Δ) / (2a)。
(2) 若有两个相等的实数根,则根的值为:x1 = x2 = -b / (2a)。
(3) 若没有实数根,则方程无实数解。
三、教学重点与难点1. 教学重点:根与系数之间的关系。
2. 教学难点:理解根的判别式Δ的意义及应用。
四、教学方法1. 采用问题驱动法,引导学生探究根与系数的关系。
2. 通过实例分析,让学生感受数学知识在实际问题中的应用。
3. 利用数形结合法,帮助学生直观地理解根与系数之间的关系。
五、教学准备1. 教学课件:展示一元二次方程的图像,直观地展示根与系数之间的关系。
2. 实例:准备一些实际问题,让学生运用根与系数的关系解决问题。
3. 练习题:设计一些有关根与系数关系的练习题,巩固所学知识。
六、教学过程1. 引入新课:通过复习一元二次方程的一般形式和根的判别式,引导学生思考根与系数之间的关系。
2. 讲解根与系数的关系:结合课件和实例,讲解一元二次方程的根与系数之间的关系。
3. 互动环节:学生分组讨论,尝试解决实例中的问题,教师巡回指导。
4. 练习环节:学生独立完成练习题,教师选取部分题目进行讲解和解析。
5. 总结与反思:学生分享学习心得,教师总结根与系数之间的关系及其应用。
七、教学拓展1. 探讨二元二次方程的根与系数之间的关系。
2. 研究多项式方程的根与系数之间的关系。
3. 引导学生思考根与系数关系在实际问题中的应用,如线性规划、优化问题等。
八、课后作业1. 复习根与系数的关系,巩固所学知识。
一元二次方程的根与系数的关系教案一元二次方程的根与系数的关系教案一、教学目标(一)知识与技能通过观察、归纳、类比、讨论等活动,探索并掌握一元二次方程的根与系数的关系.(二)过程与方法通过对方程的求解过程进行回顾,渗透从特殊到一般的数学思想,并培养学生的观察、探究能力.(三)情感态度与价值观通过一元二次方程根与系数的关系的探究,培养学生初步形成对数学整体性的认识以及前后一致的逻辑推理能力.二、教学重难点教学重点:掌握一元二次方程的根与系数的关系.教学难点:将根的判别式由数值计算推广到字母运算,正确理解判别式的意义.三、教学过程(一)导入新课,明确目标师:同学们,上一节课我们学习了如何解一元二次方程,并且通过几道例题对解法进行了具体的阐述。
今天我们将在此基础上,探究一元二次方程的根与系数的关系。
那么什么是一元二次方程的根与系数呢?如何用数学语言描述呢?带着这些问题,我们一起学习今天的课题“一元二次方程的根与系数的关系”。
(二)自主探究,掌握新知定义一元二次方程的根与系数。
师:首先请同学们思考一下,一元二次方程的根是什么?系数又是什么?他们之间存在什么样的关系呢?现在我们一起来探讨一下。
假设ax²+bx+c=0(a≠0)是关于x的一元二次方程,那么x1,x2是它的两个实数根。
其中a、b、c分别是方程的系数。
那么,根与系数之间存在什么样的关系呢?我们可以通过以下步骤进行探究:(1)分别计算出x1+x2和x1x2的值;(2)根据计算结果,总结根与系数的关系。
通过实例探究根与系数的关系。
师:现在我们通过一个具体的实例来探究一元二次方程的根与系数的关系。
例如,方程2x²-4x-6=0的两个根分别为x1=x2=1,则x1+x2=2,x1x2=-3。
那么我们可以发现,对于任何一个一元二次方程ax²+bx+c=0(a≠0),它的根与系数之间都满足以下关系:x1+x2=-b/a,x1x2=c/a。
一元二次方程的根与系数的关系数学教案标题:一元二次方程的根与系数的关系I. 引言A. 课程目标B. 学习者背景C. 主题介绍II. 一元二次方程回顾A. 一元二次方程的定义B. 一元二次方程的标准形式C. 一元二次方程的解法(因式分解法、完全平方公式法、求根公式法)III. 根与系数的关系A. 定义:如果一元二次方程ax²+bx+c=0(a≠0)有两根x₁, x₂,则有如下关系:i. x₁+x₂=-b/aii. x₁x₂=c/aB. 推导过程C. 应用实例IV. 实践活动A. 分组讨论:通过实际问题引出一元二次方程,然后利用根与系数的关系解决问题B. 小组展示:每组分享自己的解决思路和方法C. 教师点评:对各小组的表现进行评价,并进一步强调根与系数的关系的重要性V. 总结与反馈A. 本节课的主要内容回顾B. 学生自我评估学习效果C. 教师给出下一节课程的学习建议以下是一个关于根与系数的关系应用实例的部分内容示例:实例:已知一元二次方程2x²-3x-5=0有两个实数根x₁, x₂,试求下列各式的值:a) (x₁²+x₂²)b) (x₁³+x₂³)解答:根据根与系数的关系,我们有:x₁+x₂=-(-3/2)=3/2x₁x₂=-5/2对于a),我们有:x₁²+x₂²=(x₁+x₂)²-2x₁x₂=(3/2)²-2(-5/2)=9/4+5=29/4对于b),我们有:x₁³+x₂³=(x₁+x₂)(x₁²-x₁x₂+x₂²)=(3/2)[(3/2)²-2(-5/2)+x₁²+x₂²]=(3/2)[9/4+5+29/4]=67/2。
《一元二次方程根与系数的关系》教案
教学目标:
1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。
2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。
3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。
教学重点:
一元二次方程的根与系数的关系及简单应用。
教学难点:
一元二次方程的根与系数的关系的推导。
数学思考与问题解决:
通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。
学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。
通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。
培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。
【学案内容】:
1、方程:X 2+3X –4=0
(1)二次项系数是_____ ,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)则X 1+X 2=_______, 方程中 ()二次项系数
一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数
常数项=
2、方程3 X 2+X-2=0
(1)二次项系数是_____,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)则X 1+X 2=_______, 方程中 ()二次项系数
一次项系数=- 比一比,你发现了什么呢:__________________________________
(4) X 1·X 2=_______, 方程中 ()二次项系数
常数项= 比一比,你发现了什么呢:__________________________________
3、方程X 2-2X=
(1)二次项系数是_____,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)由你发现的规律可知:
X 1+X 2=()(=-________)(________) X 1·X 2=()=)
(_________)(_________ 二、合作求证 生成新知(每小题10分,共20分)(合作完成,交换检查)
【师生活动】:
教师引导,巡视,随时发现问题、了解学生导学案完成情况并点
拨;鼓励学生参与合作学习,调动学生合作交流的主动性和积极性。
学生小组合作完成导学案,通过推导证明前面的结论;实现一元
二次方程的根与系数的关系感性认识到理性认识的转变;小组长检查小组成员完成情况后,两小组交换检查推导过程;分小组汇报合作学习成果。
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的证明过程,即理性认识过程。
让学生自己发现问题、探求规律,两从理论角度加以验证,经历从特殊到一般的科学探索过程,培养学生科学、严谨的求学态度,团队精神和合作意识,促进学生的相互交流、学习。
【学案内容】:
(1)根据以上规律,若aX 2+bX+c=0 (a ≠0) 的两个根为X 1和X 2,则
X 1+X 2=_______, X 1·X 2=_______。
(2)这是不是一个普遍规律呢?在所有的一元二次方程中,是否成立呢?请用一元二次方程的一般形式证明:(b2-4a c≧0)
∵X1=
a ac
b b
2
4 2-
+
-
X2=
a ac
b b
2
4 2-
-
-
∴X1+X2=
∴X1·X2=
三、交流展示目标达成(每小题10分,共40分)(合作完成,分组展示)【师生活动】:
教师巡视,随时发现问题、了解学生导学案完成情况并适时点拨、强调;充分利用现有设施设备,为学生搭建电子白板、实物投影、黑板等不同的展示自我的平台;适时评价、鼓励学生能多种方法解决问题,促进发散思维的培养。
导学案【目标1】:学生先独立完成,组长检查,后组内交流,全班汇报、评价。
(学生利用一体机白板演示解题过程)
导学案【目标2】:小组合作完成,组长督促,全班汇报、评价。
(学生利用实物投影展示解题过程)
导学案【目标3】:小组合作完成,组长督促,全班汇报、评价。
(学生利用黑板展示解题过程)
【设计意图】:
本环节为“一元二次方程的根与系数的关系”的实践过程,即教学目标的达成、检测过程。
设计了三个不同难度且有梯度的“目标”,让学生由易到难、由浅入深,加深对一元二次方程的根与系数的关系的理解和应用,强调学生对科学的严谨性和书写的规范性,培养学生对所学知识的应用意识和应用能力,以及合作学习意识与数学语言的表述能力。
【学案内容】:
【目标1】不解方程,求下列方程的两根的和与两根的积各是多少?
(1)x 2-3x+1=0; (2)3x 2-2x=2;
【目标2】已知方程X 2-4X+M=0的一个根是-2,求方程的另一个根及M 的值。
【目标3】已知X 1 ,X 2 是方程2X 2-4X-1=0的两个实数根,求 的值。
四、查漏补缺 总结提高(共10分)(自主完成,集体分享)
【师生活动】:
教师鼓励学生谈所学所想所获,集体分享学习成果,归纳课堂所学知识点,解决学习中仍然存在的问题和困惑。
【设计意图】:
本环节为本节课的总结提高过程。
目的是帮助所有学生总结回顾、查漏补缺,形成知识体系,培养学生及时小结、善于归纳梳理的学习习惯,提高学生运用数学语言的能力和口头表达能力。
【学案内容】:
请你谈谈本节课的收获或存在的问题。
__________________ 22
1
2x x。