2.3.1 双曲线及其标准方程
- 格式:doc
- 大小:306.50 KB
- 文档页数:6
2.3 双曲线2.3.1 双曲线及其标准方程整体设计教材分析“双曲线及其标准方程”是在讲完了“圆的方程”“椭圆及其标准方程”之后,学习的又一类圆锥曲线知识,也是中学解析几何的学习中最重要的内容之一,它在社会生产、日常生活和科学技术等领域有着广泛的应用,也是大纲中明确要求学生必须熟练掌握的重要内容.双曲线的定义、标准方程与椭圆类似,教科书的处理方法也相仿,也就是说,本小节在数学思想和方法上没有新内容,因此,这一小节的教学可以参照第2.2.1节进行.教学中要着重对比椭圆与双曲线的相同点和不同点,特别是它们的不同点.课时分配本节内容分两课时完成.第1课时讲解双曲线的定义,要求学生类比椭圆标准方程的推导过程推导双曲线的标准方程;第2课时讲解运用双曲线的定义及其标准方程解题.第1课时教学目标知识与技能使学生掌握双曲线的定义,理解双曲线标准方程的推导过程,能根据条件确定双曲线的标准方程.过程与方法在与椭圆的类比中,掌握双曲线的标准方程的推导方法,增强合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、数形结合思想解决问题的能力.情感、态度与价值观发挥类比的作用,与椭圆形成对比,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神,通过引入b2,使方程形式更对称、简洁,无疑会让学生感到数学的特殊魅力,增强学生学习数学的浓厚兴趣.重点难点教学重点:双曲线的定义和双曲线的标准方程.教学难点:双曲线标准方程的推导.教学过程复习引入1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆的标准方程(1)焦点在x 轴x 2a 2+y 2b 2=1,(a>b>0); (2)焦点在y 轴y 2a 2+x 2b 2=1,(a>b>0). 3.a 、b 、c 之间有何种关系?a 2=c 2+b 2.探究新知探究:如果把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?用几何画板演示拉链的轨迹:(A) (B)活动成果:以上两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.下面请同学们思考以下问题:设问:①定点与动点不在同一平面内,能否得到双曲线?②两条曲线中到“两定点的距离的差”有什么关系?③这个常数是否会大于或等于两定点间的距离?(几何画板演示当常数等于|F 1F 2|及常数大于|F 1F 2|时的点的轨迹,帮助学生理解)请学生回答:1.不能.指出必须“在平面内”.2.到两定点的距离的差的绝对值相等,否则只表示双曲线的一支,且到两定点的距离的差的绝对值为一个常数,即||MF 1|-|MF 2||=2a.3.应小于两定点间距离且大于零.当常数等于|F 1F 2|时,轨迹是以F 1、F 2为端点的两条射线;当常数大于|F 1F 2|时,无轨迹.活动设计:小组讨论,实验演示,通过提出问题,让学生讨论问题,并尝试解决问题.让学生了解双曲线的前提条件,并培养学生的全面思考能力.感受曲线,解读演示得到的图形是双曲线(一部分).提出问题:类比椭圆的定义,给出双曲线的定义.活动设计:学生先独立思考,教师加以引导,与椭圆有一个类比,允许学生自愿合作、讨论、交流.学情预测:学生的回答可能不全面、不准确,我们可以用几何画板演示学生的回答,让他们发现问题,然后不断补充、纠正,趋于完善.活动成果:师生共同概括出双曲线的定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离的差的绝对值等于常数、常数小于|F 1F 2|且大于零)下面我们类比椭圆方程的推导,选择适当的坐标系,建立双曲线方程.为今后通过方程研究双曲线的性质做好准备.提出问题:求椭圆方程的步骤是什么?。
§ 2.3双曲线2.3.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(3)双曲线中a 、b 、c 的关系是________________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b(ab<0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1B .x 23-y 2=1C .y 2-x 23=1D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1二、填空题8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=________________________________________________________________________.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升A.[3-23,+∞) B.[3+23,+∞)C.[-74) D.[74,+∞)13.已知双曲线的一个焦点为F(7,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.3 双曲线2.3.1 双曲线及其标准方程知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距 2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.] 2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4.①又点(2,3)在双曲线上,∴22a 2-32b2=1.② 由①②解得a 2=1,b 2=3, ∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a2 1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.] 7.2解析 ∵||PF 1|-|PF 2||=4,又PF 1⊥PF 2,|F 1F 2|=25,∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2x 2b 2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4), 又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5, 所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C =2R ,代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),13.解 设双曲线的标准方程为x 2a 2-y 2b 2=1, 且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。