2.3.1 双曲线及其标准方程
- 格式:doc
- 大小:306.50 KB
- 文档页数:6
2.3 双曲线2.3.1 双曲线及其标准方程整体设计教材分析“双曲线及其标准方程”是在讲完了“圆的方程”“椭圆及其标准方程”之后,学习的又一类圆锥曲线知识,也是中学解析几何的学习中最重要的内容之一,它在社会生产、日常生活和科学技术等领域有着广泛的应用,也是大纲中明确要求学生必须熟练掌握的重要内容.双曲线的定义、标准方程与椭圆类似,教科书的处理方法也相仿,也就是说,本小节在数学思想和方法上没有新内容,因此,这一小节的教学可以参照第2.2.1节进行.教学中要着重对比椭圆与双曲线的相同点和不同点,特别是它们的不同点.课时分配本节内容分两课时完成.第1课时讲解双曲线的定义,要求学生类比椭圆标准方程的推导过程推导双曲线的标准方程;第2课时讲解运用双曲线的定义及其标准方程解题.第1课时教学目标知识与技能使学生掌握双曲线的定义,理解双曲线标准方程的推导过程,能根据条件确定双曲线的标准方程.过程与方法在与椭圆的类比中,掌握双曲线的标准方程的推导方法,增强合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、数形结合思想解决问题的能力.情感、态度与价值观发挥类比的作用,与椭圆形成对比,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神,通过引入b2,使方程形式更对称、简洁,无疑会让学生感到数学的特殊魅力,增强学生学习数学的浓厚兴趣.重点难点教学重点:双曲线的定义和双曲线的标准方程.教学难点:双曲线标准方程的推导.教学过程复习引入1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆的标准方程(1)焦点在x 轴x 2a 2+y 2b 2=1,(a>b>0); (2)焦点在y 轴y 2a 2+x 2b 2=1,(a>b>0). 3.a 、b 、c 之间有何种关系?a 2=c 2+b 2.探究新知探究:如果把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?用几何画板演示拉链的轨迹:(A) (B)活动成果:以上两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.下面请同学们思考以下问题:设问:①定点与动点不在同一平面内,能否得到双曲线?②两条曲线中到“两定点的距离的差”有什么关系?③这个常数是否会大于或等于两定点间的距离?(几何画板演示当常数等于|F 1F 2|及常数大于|F 1F 2|时的点的轨迹,帮助学生理解)请学生回答:1.不能.指出必须“在平面内”.2.到两定点的距离的差的绝对值相等,否则只表示双曲线的一支,且到两定点的距离的差的绝对值为一个常数,即||MF 1|-|MF 2||=2a.3.应小于两定点间距离且大于零.当常数等于|F 1F 2|时,轨迹是以F 1、F 2为端点的两条射线;当常数大于|F 1F 2|时,无轨迹.活动设计:小组讨论,实验演示,通过提出问题,让学生讨论问题,并尝试解决问题.让学生了解双曲线的前提条件,并培养学生的全面思考能力.感受曲线,解读演示得到的图形是双曲线(一部分).提出问题:类比椭圆的定义,给出双曲线的定义.活动设计:学生先独立思考,教师加以引导,与椭圆有一个类比,允许学生自愿合作、讨论、交流.学情预测:学生的回答可能不全面、不准确,我们可以用几何画板演示学生的回答,让他们发现问题,然后不断补充、纠正,趋于完善.活动成果:师生共同概括出双曲线的定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离的差的绝对值等于常数、常数小于|F 1F 2|且大于零)下面我们类比椭圆方程的推导,选择适当的坐标系,建立双曲线方程.为今后通过方程研究双曲线的性质做好准备.提出问题:求椭圆方程的步骤是什么?。
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
1如有帮助欢迎下载支持2.3.1 双曲线及其标准方程富源县第六中学 董云【学习目标】 1.记住双曲线的定义及标准方程的形式; 2.会求给定条件下的双曲线的标准方程.【学习重点】双曲线的定义与标准方程的形式.【学习难点】双曲线标准方程的推导与化简【使用说明及学法指导】带着教材助读设置的问题,阅读并探究课本4845-P P 的内容(15min ),完成学案自主学习部分(15min ).将预习中不能解决的问题标记出来,并写到后面“我的疑问”处.自主学习一、教材助读问题1:椭圆定义与双曲线定义的区别是什么?问题2:分别写出焦点在x 轴上、y 轴上的双曲线的标准方程.已知方程,如何判断焦点的位置? 问题3:点P 是双曲线上任意一点,1F 、2F 为其焦点,你能得到怎样的关系式?二、自学检测1.已知)0,2()0,2(-N M 、,动点P 满足PM -PN =2,则动点P 的轨迹是 ,轨迹方程为 . 2.已知双曲线116-922=y x ,则a = ,b =,c = ,交点坐标为 和合作探究基础知识梳理1.定义:我们把 叫做双曲线,而这个常数通常用a 2表示,这两个定点21,F F 叫做双曲线的两个焦点之间的距离叫做双曲线的 ,通常用 c 2(0>c)表示,双曲线用集合表示为:定义中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于21F F ”注:如果的系数是正时,那么焦点在轴上;2如果2y 的系数是正时,那么焦点在y 轴上.探究一求下列双曲线的标准方程: (1)10,14==+c b a(2)经过两点(7,A --,B .规律方法总结: 探究二点,A B 的坐标分别是(5,0)-,(5,0),直线AM ,BM 相交于点M ,且它们斜率之积是49,试求点M 的轨迹方程式,并由点M 的轨迹方程判断轨迹的形状.规律方法总结:探究三反馈练习1. 双曲线的两焦点坐标是)0,3(1F ,)0,3(2-F 42=b ,则双曲线的标准方程是( ) A.x 25-y 24=1 B.y 25-x 24=1C.x 23-y 22=1D.x 29-y 216=1 2. 椭圆14222=+a y x 与双曲线12-22=y a x 有相同的焦点,则a 的值是( ) A.12 B .1或-2 C .1或12D .1 3. 已知双曲线的焦点在x 轴上,且9=+c a ,3=b ,则它的标准方程是________.4.已知双曲线221169x y -=的左支上一点P到左焦点的距离为10,则点P 到右焦点的距离为5.求与椭圆152522=+y x 有共同焦点且过点(2,23)的双曲线的标准方程。
§2.3.1 双曲线及其标准方程学习目标1.理解双曲线的概念和双曲线的标准方程的推倒过程,掌握双曲线方程标准式。
2.会根据已知条件求双曲线的标准方程。
重点:双曲线的定义和标准方程。
a 难点:双曲线方程的推倒。
a 学习过程 一:知识回顾复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.二:自主学习新知1:双曲线的定义把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 . 反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 2a >12F F 时,轨迹是20a =时,轨迹是_____________________练一练:已知(2,0),(2,0),4M N PM PN --= 则动点P 的轨迹是( )(A )双曲线 (B) 双曲线左边一支 (C )一条射线 (D )双曲线边一支新知2:双曲线的标准方程: 1.双曲线标准方程的推导: (1)建系 (2)设点 (3)限制条件 (4)列式(5)化简方程 22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴)其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?探究1:如何由双曲线的标准方程来判断它的焦点是在x 轴上还是在y 轴上?判断:221169x y -=与221169y x -=的焦点位置? 结论:探究2:方程221x y m n+=,当参数,m n 的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上双曲线? 针对训练:1.求a=4,b=3,焦点在x 轴上双曲线方程2.双曲线12322=-y x 的焦点坐标是( )A 、(0,5±) B 、(5,0±)C 、(0,1±) D 、(1,0±) 3.已知方程22121x y m m -=++表示双曲线,则m 的取值范围是三:典型例题例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.针对训练:1.求适合下列条件的双曲线的标准方程 (1)焦点为(0,-6),(0,6),且经过点(2,-5)。
§2.3双曲线2.3.1双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单问题.知识点一双曲线的定义1.定义:平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹.2.定义的集合表示:{M|||MF1|-|MF2||=2a,0<2a<|F1F2|}.3.焦点:两个定点F1,F2.4.焦距:两焦点间的距离,表示为|F1F2|.知识点二双曲线标准方程焦点位置焦点在x轴上焦点在y轴上图形标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点(-c,0),(c,0)(0,-c),(0,c)a,b,c的关系c2=a2+b21.平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.() 2.平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是双曲线.()3.平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.() 4.在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()题型一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程:(1)a =4,经过点A ⎝⎛⎭⎫1,-4103;(2)焦点在x 轴上,经过点P (4,-2)和点Q (26,22); (3)过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5且焦点在坐标轴上.反思感悟 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m ,n ,避免了讨论,从而简化求解过程.跟踪训练1 求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8; (2)以椭圆x 28+y 25=1长轴的端点为焦点,且经过点(3,10).题型二 双曲线定义的应用命题角度1 双曲线中的焦点三角形问题 例2 若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)如图,若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. 引申探究将本例(2)中的条件“|PF 1|·|PF 2|=32”改为“∠F 1PF 2=60°”,求△F 1PF 2的面积.反思感悟 求双曲线中焦点三角形面积的方法 (1)方法一:①根据双曲线的定义求出||PF 1|-|PF 2||=2a ;②利用余弦定理表示出|PF 1|,|PF 2|,|F 1F 2|之间满足的关系式; ③通过配方,利用整体的思想求出|PF 1|·|PF 2|的值; ④利用公式12PF F S △=12×|PF 1|·|PF 2|sin ∠F 1PF 2求得面积.(2)方法二:利用公式12PF F S △=12×|F 1F 2|×|y P |(y P 为P 点的纵坐标)求得面积.跟踪训练2 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.命题角度2 利用定义确定与双曲线有关的轨迹方程例3 在△ABC 中,已知|AB |=42,A (-22,0),B (22,0),且内角A ,B ,C 满足sin B -sin A =12sin C ,求顶点C 的轨迹方程.反思感悟(1)求解与双曲线有关的点的轨迹问题,常见的方法有两种:①列出等量关系,化简得到方程;②寻找几何关系,由双曲线的定义,得出对应的方程.(2)求解双曲线的轨迹问题时要特别注意:①双曲线的焦点所在的坐标轴;②检验所求的轨迹对应的是双曲线的一支还是两支.跟踪训练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.双曲线在生活中的应用典例 “神舟”九号飞船返回仓顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回仓预计到达区域安排了三个救援中心(记A ,B ,C ),A 在B 的正东方向,相距6千米,C 在B 的北偏西30°方向,相距4千米,P 为航天员着陆点.某一时刻,A 接收到P 的求救信号,由于B ,C 两地比A 距P 远,在此4秒后,B ,C 两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A 处发现P 的方位角.[素养评析] 利用双曲线解决实际问题的基本步骤如下:(1)建立适当的坐标系; (2)求出双曲线的标准方程;(3)根据双曲线的方程及定义解决实际应用问题. 注意:①解答与双曲线有关的应用问题时,除要准确把握题意,了解一些实际问题的相关概念,同时还要注意双曲线的定义及性质的灵活应用.②实际应用问题要注意其实际意义以及在该意义下隐藏着的变量范围.1.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( )A .双曲线B .双曲线的一支C .直线D .一条射线2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1B .1或-2C .1或12D.123.过点(1,1),且ba=2的双曲线的标准方程是( )A.x 212-y 2=1 B.y 212-x 2=1 C .x 2-y 212=1 D.x 212-y 2=1或y 212-x 2=1 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的同一支相交,且所得弦长|AB |=m ,则△ABF 2的周长为( )A .4aB .4a -mC .4a +2mD .4a -2m5.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________________.1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出关于a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1(mn <0)的形式求解.一、选择题1.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫62,0 C.⎝⎛⎭⎫52,0 D .(3,0) 2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为25,则该双曲线的方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1 D.x 22-y 23=1 3.已知双曲线x 2a -3+y 22-a=1,焦点在y 轴上,若焦距为4,则a 等于( )A.32 B .5 C .7 D.124.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( )A .3或7B .6或14C .3D .75.“mn <0”是方程“mx 2+ny 2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A.x 216-y 29=1 B.x 216-y 29=1(x ≥4) C.x 29-y 216=1 D.x 29-y 216=1(x ≥3) 7.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线的一支B .圆C .椭圆D .双曲线8.若双曲线x 2n -y 2=1(n >1)的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积为( )A .1 B.12 C .2 D .4二、填空题9.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是________.10.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________.11.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________. 三、解答题12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.13.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.14.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.3215.已知△OFQ 的面积为26,且OF →·FQ →=m ,其中O 为坐标原点. (1)设6<m <46,求OF →与FQ →的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝⎛⎭⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.。
§ 2.3双曲线2.3.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(3)双曲线中a 、b 、c 的关系是________________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b(ab<0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1B .x 23-y 2=1C .y 2-x 23=1D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1二、填空题8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=________________________________________________________________________.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B(4,0)、C(-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升A.[3-23,+∞) B.[3+23,+∞)C.[-74) D.[74,+∞)13.已知双曲线的一个焦点为F(7,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.3 双曲线2.3.1 双曲线及其标准方程知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距 2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.] 2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4.①又点(2,3)在双曲线上,∴22a 2-32b2=1.② 由①②解得a 2=1,b 2=3, ∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2-y 25-a2 1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.] 7.2解析 ∵||PF 1|-|PF 2||=4,又PF 1⊥PF 2,|F 1F 2|=25,∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2x 2b 2=1 (a >0,b >0),由题意知c 2=36-27=9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4), 又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5, 所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C =2R ,代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),13.解 设双曲线的标准方程为x 2a 2-y 2b 2=1, 且c =7,则a 2+b 2=7.①由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。