双曲线定义及标准方程推导
- 格式:ppt
- 大小:513.50 KB
- 文档页数:5
双曲线一二三定义及推导双曲线是二维平面上的一类曲线,它的形状类似于一条拉长的长蛋糕。
在数学中,双曲线有三种常见的定义方式,分别是用几何定义、用解析几何定义和用参数方程定义。
下面将详细介绍这三种定义方式及其推导。
一、几何定义:双曲线的几何定义是通过一个焦点和一个确定的准线上的一个点到这个焦点和焦准线之间的距离差的比例来确定的。
设焦点为F,准线为L,准线上的一个点为P,点P到焦点F的距离为d1,到焦准线L的距离为d2,则双曲线的几何定义是d1/d2等于一个常数e(离心率)。
用数学符号表示为:d1/d2 = e其中,e是一个大于1的常数,称为离心率。
通过几何定义,我们可以得到双曲线的一些性质。
首先,双曲线是对称的,即关于焦准线对称。
其次,离心率e越大,双曲线的拉长程度越高。
最后,双曲线的两个分支无限延伸,且与焦准线无限靠近但永远不会相交。
二、解析几何定义:双曲线的解析几何定义是通过代数方程来表示的。
设焦点为F(c, 0),离心率为e,焦准线为x = a/e(a为坐标原点到焦准线的距离),则双曲线的解析几何定义为:(x^2 + y^2)/(a^2) - (y^2)/(b^2) = 1其中,b^2 = a^2 * (e^2 - 1)。
通过解析几何定义,我们可以进一步推导双曲线的一些性质。
首先,双曲线的中心在原点(0, 0)处。
其次,双曲线以x轴和y轴为渐近线,即双曲线的两个分支与x轴和y轴无限靠近但永远不会相交。
最后,双曲线的曲线方程可以写成标准形式:x^2/a^2 - y^2/b^2 = 1或y^2/b^2 - x^2/a^2 = 1,其中a为实际顶点到中心的距离,b为顶点到焦准线的距离。
三、参数方程定义:双曲线的参数方程定义是通过参数方程来表示的。
设焦点为F(c, 0),离心率为e,参数为t,则双曲线的参数方程定义为:x = a*cosh(t)y = b*sinh(t)其中,a = 1/e,b = 1。
双曲线标准方程的推导过程双曲线是一种二次曲线,与椭圆和抛物线类似,具有一些特殊的性质和形态。
双曲线的标准方程是一个关于x和y的方程,其推导过程较为复杂,需要从基本定义开始逐步推导。
首先介绍一下双曲线的定义:设点F_1(-c,0)和F_2(c,0)是平面上固定的两个点,点P(x,y)是平面上动态的点。
双曲线是满足PF_1 - PF_2 = 2a (a>0)的动点P所构成的图形。
根据定义推导双曲线的标准方程:1.根据两点之间的距离公式,可以得到PF_1和PF_2的距离公式:PF_1² = (x + c)² + y²PF_2² = (x - c)² + y²2.根据定义中的等式PF_1 - PF_2 = 2a,可以得到:(x + c)² + y² - (x - c)² - y² = 4a²化简后可得:4cx = 4a²化简后可得:x = a²/c3.将x = a²/c代入PF_1² = (x + c)² + y²中,得到:(a²/c + c)² + y² = PF_1²化简后可得:(a² + c²) / c² + y² = PF_1² / c²4.根据双曲线的性质PF_1² - PF_2² = 4a²,可以得到:PF_1² - PF_2² = 4a²(a² + c²) / c² - [(a² - c²) / c² + y²] = 4a² / c²化简后可得:2c² / c² - y² / c² = 4a² / c²化简后可得:2 - y² / c² = 4a² / c²化简后可得:y² / c² - 2 = 4a² / c²化简后可得:y² / c² - 4a² / c² = 2通过上述推导过程,我们得到了双曲线的标准方程:y² / c² - x² / a² = 1其中,c是双曲线的焦点到中心的距离,a是双曲线的半轴长度。
2.3双曲线2.3.1双曲线及其标准方程1.了解双曲线的定义,几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1、F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程1.判断(正确的打“√”,错误的打“×”)(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程x2a2-y2b2=1中,a>0,b>0且a≠b.()答案:(1)×(2)×(3)×2.已知双曲线x216-y29=1,则双曲线的焦点坐标为()A.(-7,0),(7,0)B.(-5,0),(5,0) C.(0,-5),(0,5) D.(0,-7),(0,7)答案:B3.在双曲线的标准方程中,若a=6,b=8,则其标准方程是()A.y236-x264=1B.x264-y236=1C.x236-y264=1D.x236-y264=1或y236-x264=1答案:D4.设双曲线x216-y29=1的右支上一点P到左焦点F1的距离是15,则P到右焦点F2的距离是________.答案:7探究点一 求双曲线的标准方程求适合下列条件的双曲线的标准方程.(1)a =25,经过点A (2,-5),焦点在y 轴上;(2)与双曲线x 216-y 24=1有相同的焦点,且经过点(32,2);[解] (1)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0).由题设知,a =25,且点A (2,-5)在双曲线上,所以⎩⎪⎨⎪⎧a =25,25a 2-4b 2=1,解得a 2=20,b 2=16. 故所求双曲线的标准方程为y 220-x 216=1.(2)因为焦点相同,所以设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 所以c 2=16+4=20,即a 2+b 2=20.①因为双曲线经过点(32,2),所以18a 2-4b 2=1.②由①②得a 2=12,b 2=8,所以双曲线的标准方程为x 212-y 28=1.求双曲线的标准方程的步骤求双曲线的标准方程通常采用待定系数法,步骤归结如下:1.根据下列条件,求双曲线的标准方程.(1)与椭圆x 227+y 236=1有共同的焦点,且过点(15,4);(2)经过点(3,0),(-6,-3).解:(1)椭圆x 227+y 236=1的焦点坐标为F 1(0,-3),F 2(0,3),故可设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0).由题意,知⎩⎪⎨⎪⎧a 2+b 2=9,42a 2-(15)2b 2=1,解得⎩⎨⎧a 2=4,b 2=5.故双曲线的方程为y 24-x 25=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0),因为双曲线经过点(3,0),(-6,-3),所以⎩⎨⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,所以所求双曲线的标准方程为x 29-y 23=1.探究点二 双曲线定义的应用设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,求△PF 1F 2的面积.[解] 由已知得2a =2,又由双曲线的定义得|PF 1|-|PF 2|=2,因为|PF 1|∶|PF 2|=3∶2,所以|PF 1|=6,|PF 2|=4.又|F 1F 2|=2c =213,由余弦定理,得cos ∠F 1PF 2=62+42-522×6×4=0, 所以△F 1PF 2为直角三角形.S △PF 1F 2=12×6×4=12.若将“|PF 1|∶|PF 2|=3∶2”改为“|PF 1|·|PF 2|=24”,求△PF 1F 2的面积.解:由双曲线方程为x 2-y 212=1,可知a =1,b =23,c =1+12=13.因为|PF 1|·|PF 2|=24,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-4c 22×24=4+2×24-4×1348=0 所以△PF 1F 2为直角三角形.所以S △PF 1F 2=12|PF 1|·|PF 2|=12.双曲线的定义是解决与双曲线有关的问题的主要依据,在应用时,一是注意条件||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)的使用,二是注意与三角形知识相结合,经常利用正、余弦定理,同时要注意整体运算思想的应用.2.(1)若双曲线x 24-y 212=1上的一点P 到它的右焦点F 2的距离为8,则点P 到它的左焦点F 1的距离是( )A .4B .12C .4或12D .6(2)已知双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,求△F 1MF 2的面积.解:(1)选C.由双曲线的定义得||PF 1|-|PF 2||=2a =4, 所以||PF 1|-8|=4,所以|PF 1|=4或12.(2)由双曲线方程知a=2,b=3,c=13,不妨设|MF1|=r1,|MF2|=r2(r1>r2).由双曲线定义得r1-r2=2a=4.两边平方得r21+r22-2r1·r2=16,即|F1F2|2-4 S△F1MF2=16,即4 S△F1MF2=52-16,所以S△F1MF2=9.探究点三利用双曲线的定义求轨迹问题动圆M与圆C1:(x+3)2+y2=9外切,且与圆C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.[解]设动圆半径为R,因为圆M与圆C1外切,且与圆C2内切,所以|MC1|=R+3,|MC2|=R-1,所以|MC1|-|MC2|=4.所以点M的轨迹是以C1、C2为焦点的双曲线的右支,且有a=2,c=3,b2=c2-a2=5,所以所求轨迹方程为x24-y25=1(x≥2).本例中圆的方程不变,若动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.解:如图,设动圆半径为R,根据两圆外切的条件,得|MC2|=R +1,|MC1|=R+3,则|MC 1|-|MC 2|=2.这表明动点M 与两定点C 1,C 2的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的右支(点M 与C 1的距离大,与C 2的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x >0).用定义法求轨迹方程的一般步骤(1)根据已知条件及曲线定义确定曲线的位置及形状(定形,定位).(2)根据已知条件确定参数a ,b 的值(定参).(3)写出轨迹方程并下结论(定论).3.(1)若动点M 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x <0)D.x 29-y 216=1(x >0)(2) 如图,在△ABC 中,已知|AB |=42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解:(1)选D.由双曲线的定义得,P 点的轨迹是双曲线的一支.由已知得⎩⎨⎧2c =10,2a =6,所以a =3,c =5,b =4.故P 点的轨迹方程为x 29-y 216=1(x >0),因此选D.(2)以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c 2R (R 为△ABC 的外接圆半径).因为2sin A +sin C =2sin B ,所以2a +c =2b ,即b -a =c 2,从而有|CA |-|CB |=12|AB |=22<|AB |.所以a =2,c =22,b 2=6,所以顶点C 的轨迹方程为x 22-y 26=1(x >0,y ≠0).1.对双曲线标准方程的三点说明(1)标准方程中两个参数a 和b ,是双曲线的定形条件,确定了其值,方程也即确定.并且有b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别.(2)焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型,若x 2的系数为正,则焦点在x 轴上,若y 2的系数为正,则焦点在y 轴上.(3)在双曲线的标准方程中,因为a ,b ,c 三个量满足c 2=a 2+b 2,所以长度分别为a ,b ,c 的三条线段恰好构成一个直角三角形,且长度为c 的线段是斜边,如图所示.2.对双曲线定义的理解设M (x ,y )为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的任意一点,左、右焦点分别为F 1,F 2.若点M 在双曲线的右支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a .因此得到|MF 1|-|MF 2|=±2a ,这与椭圆的定义中|MF 1|+|MF 2|=2a 是不同的.[注意] 双曲线定义中||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.3.双曲线方程的其他形式(1)当双曲线的焦点所在坐标轴不易确定时可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B =1.因此,当A >0时,。
双曲线常用的六个结论推导双曲线是一种常见的数学曲线,它在数学和物理学中有着广泛的应用。
在这篇文章中,我们将推导出双曲线的六个常用结论,并对每个结论进行详细的解释。
一、双曲线的定义和方程双曲线是平面上一组点的集合,满足到两个定点(焦点)的距离之差等于一个常数(离心率)与该点到直线(准线)的距离之差的绝对值。
双曲线可以用以下方程表示:x^2/a^2 - y^2/b^2 = 1二、双曲线的焦点和准线焦点是双曲线上到两个定点距离之差等于常数e与该点到准线距离之差绝对值的点。
准线是与焦点等距离且位于坐标系y轴上方或下方的直线。
对于双曲线x^2/a^2 - y^2/b^2 = 1,焦点位于(±ae,0),准线位于y = ±b/e。
三、双曲线的渐近线双曲线有两条渐近线,它们是与双曲线无穷远处相切且斜率为±b/a的直线。
双曲线的渐近线方程可以通过将x或y趋于无穷大来推导出来。
对于双曲线x^2/a^2 - y^2/b^2 = 1,其渐近线方程为y = ±(b/a)x。
四、双曲线的对称轴和顶点对称轴是双曲线的中心轴,它是与焦点和准线垂直且经过中点的直线。
对称轴方程可以通过将x或y置零来推导出来。
对于双曲线x^2/a^2 - y^2/b^2 = 1,其对称轴方程为y = 0。
顶点是双曲线与对称轴的交点,对于这个双曲线,顶点位于(0, 0)。
五、双曲线的离心率和焦距离心率是描述双曲线形状的一个参数,它定义为焦距与准线之间的比值:e = c/a,其中c表示焦距,a表示椭圆长半轴长度。
离心率决定了双曲线的形状,当离心率小于1时,双曲线是压缩型;当离心率等于1时,双曲线是标准型;当离心率大于1时,双曲线是扩张型。
六、双曲线的参数方程双曲线也可以用参数方程表示,其中x = asecθ,y = btanθ。
参数θ的范围可以是任意实数(除了θ = ±π/2)。
通过将参数方程代入双曲线的定义方程,可以验证其正确性。
双曲线的标准方程双曲线是解析几何中的一类二次曲线,具有许多特殊的几何和代数性质。
本文将详细介绍双曲线的标准方程及其性质。
1. 双曲线的定义双曲线是指一组点P和一个点F,满足从P到F到一个定点D的距离差的绝对值等于一个定值e,即PF - PD = e。
双曲线可以通过椭圆的定义进行推导。
如果从椭圆上的固定点F到点P的距离之和等于一个定值2a,那么从F到P的距离差将等于2a - 2PF,即PF - PD = e,其中e = 2a - 2c,c为椭圆的其中一个焦点到椭圆中心的距离。
因此,双曲线可以看作是一个椭圆的镜像,是的焦点位置沿着中心轴移动了一段距离,从而形成的一组点。
2. 双曲线的标准方程双曲线的标准方程通常写作:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)这里的a和b分别是椭圆的半轴。
对于双曲线的方程,可以进一步推导出其他形式。
例如,将x和y交换,在方程中加上常数c,可以得到:-y^2/a^2 + x^2/b^2 = c这种形式叫做横向双曲线;另一种形式是纵向双曲线:y^2/a^2 - x^2/b^2 = 1这里的a和b是椭圆的半轴。
3. 双曲线的几何性质双曲线有一些有趣的几何性质,如下所示:(1) 双曲线具有两个分离的分支,这两个分支无穷远处相交于双曲线的渐近线。
(2) 双曲线的渐近线是其方程中不等于0的项所对应的直线。
(3) 双曲线对称于其两条渐近线。
(4) 双曲线移动或旋转后仍然是双曲线。
(5) 两个相交的双曲线组成了双曲线族。
(6) 双曲线上的点到两个焦点的距离之差等于常数e。
4. 双曲线的代数性质双曲线也有许多有趣的代数性质,例如:(1) 双曲线是一类二次曲线,它们的方程可以写成x^2 + y^2 + Ax + By + C = 0的形式。
(2) 双曲线的法线与其渐近线的夹角相等。
(3) 双曲线的切线与两个焦点之间的连线垂直。
(4) 不同的双曲线是正交的。
双曲线参数方程推导原理双曲线是一种经典的二次曲线,其参数方程是一种描述双曲线形状的数学公式。
通过双曲线参数方程,我们可以确定双曲线的位置、形状、方向及大小等重要性质。
本文将介绍双曲线参数方程的推导原理,帮助读者深入理解双曲线的本质。
双曲线的定义是:在平面直角坐标系中,两条相交的渐近线的中点为曲线的对称中心,且两条渐近线的夹角小于180度的曲线称为双曲线。
因此,双曲线的形状和位置均与渐近线的位置和夹角有关。
双曲线的标准方程是:$frac{x^2}{a^2} - frac{y^2}{b^2} = 1$,其中$a$和$b$分别为双曲线在$x$轴和$y$轴上的截距。
为了描述双曲线的运动轨迹,我们需要引入参数$t$,并将$x$和$y$表示为$t$的函数。
具体来说,我们令:$x = asec t$$y = btan t$其中,$sec t = frac{1}{cos t}$表示余切函数,$tan t = frac{sin t}{cos t}$表示正切函数。
这样,我们就得到了双曲线的参数方程:$begin{cases} x = asec t y = btan t end{cases}$ 双曲线的参数方程与其标准方程之间的关系是:$frac{x^2}{a^2} - frac{y^2}{b^2} = frac{a^2}{a^2cos^2 t} - frac{b^2}{b^2sin^2 t} = frac{1}{cos^2 t} - frac{1}{sin^2 t} = frac{sin^2 t - cos^2 t}{cos^2 tsin^2 t} = frac{1}{cos^2t}cdotfrac{sin^2 t}{cos^2 t - sin^2 t} = 1$因此,双曲线的参数方程确实满足其标准方程。
双曲线的参数方程还可以进一步简化。
我们注意到$sec t = frac{1}{cos t} = sqrt{1 + tan^2 t}$,因此有:$x = asqrt{1 + tan^2 t} = asqrt{frac{sin^2 t + cos^2t}{cos^2 t}} = afrac{sqrt{cos^2 t + sin^2 t}}{cos t} =afrac{1}{cos t}$$y = btan t$从中我们可以看到,$x$的值只与$cos t$有关,$y$的值只与$tan t$有关。